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Abstract

This thesis is aimed at tackling the multivariate integration problem (with
respect to quasi-Monte Carlo-rules) in the space of generalized Walsh se-
ries. To this end, the family of generalized Walsh functions defined over the
finite field IF,, where ¢ is a prime power, is introduced and some of their
most important properties are presented (see also [16], for instance, or [6]
for a survey on the integer-base case). Furhtermore, after having outlined
the basic principles of reproducing kernel Hilbert spaces (see, e.g.,[1]), the
information that is hereby elaborated is deployed to construct the weighted
Hilbert space of generalized Walsh series over Fy, i.e. J%,14~, and to find
its reproducing kernel Ky, s 3, which, as is shown in the course of this the-
sis, may be simplified such that it can be evaluated computationally, (see [6]
for the prime case). This fact immediately comes into play when analizing
the error behavior of quasi-Monte Carlo-rules applied in .1 5 5.~, since the
worst-case error strongly depends on Ky s 5~ (cf. [5, 6]). In particular, the
employment of digital (¢,m, s)-nets (see [6], for instance) as sample points
for quasi-Monte Carlo integration is investigated, which helps to relate the
worst-case error to the so-called dual net and thereby reduces the compu-
tational cost and, above all, to provide existence results for “good” sample
points (see, e.g., [6] for the prime case). Besides, also (strong) tractability
of integration in J%, s 5. is taken into consideration to determine the qual-
ity of quasi-Monte Carlo integration in this space resulting in necessary as
well as sufficient conditions on the sequence of weights v = (7;)jen (see [6]
again, for instance). In order to move towards concrete point sets, four con-
struction algorithms for digital nets over F, are presented. These include the
component-by-component construction, a Korobov type construction, the
construction method by Niederreiter and the construction method by Sobol’,
where the first two are examples for generating so-called polynomial lattices
(see also [4,[5]). Moreover, it is shown that all of these algorithms (except for
the Korobov type construction, which has its advantage in the complexity of
its construction) satisfy an estimate for the worst-case error which is indepen-
dent of the dimension s under certain conditions and are hence candidates
for exploiting tractability and strong tractability of integration in J%,1 5 5.-
For quasi-Monte Carlo-rules using point sets obtained by the Korobov type
construction it is still possible (again, under certain conditions) to bound the
worst-case error with a polynomial dependence on the dimension and thus
tractability applies, nevertheless, (see [3, 4] for the prime case).
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Introduction 1

1 Introduction

We are primarily interested in approximating the integral of a function f
over the s-dimensional unit cube [0, 1)® by using an equally weighted n-point
quadrature rule, i.e.

1
Lwﬂmm~ﬁzﬂm»

where Xxg,...,x,_ 1 are deterministically chosen sample points. Rules of the
above form are usually referred to as quasi-Monte Carlo-rules (QMC-rules).
Note that, in the above expression, the left handside equals the mean of the
function f over the unit cube. Thus, it is a reasonable approach to use the
arithmetic mean of f with respect to the sample points chosen as an approx-
imation, (cf. [6, p. 16]).

General theory on this topic confirms the self-suggesting suspicion that
the error behavior of multivariate integration by means of QMC-rules largely
depends on the choice of sample points as well as on which functions are to
be approximated (see [B, Remark 2.19], for instance). Hence, in this thesis
we will clearly set out which function space and which kind of point sets we
will restrict ourselves to.

To this end we introduce so-called generalized Walsh functions over the
finite field F,, where ¢ denotes a prime power. These are, generally speak-
ing, a family of special step functions in whose definition finite fields play
an essential role. Finally, our working space S, 53~ comprises generalized
Walsh series, i.e. series of generalized Walsh functions equipped with com-
plex coefficients, with finite norm (the respective norm will be introduced in

Section .

As it turns out, J. 58~ IS a reproducing kernel Hilbert space. These
may be briefly described as Hilbert spaces of functions for which there ex-
ists a bivariate function K with the properties that K is contained in the
Hilbert space whenever we fix one variable and, furthermore, in some sense
it represents any other function in this space via the inner product (see Def-
inition [2.1] for a full explanation).

Secondly, the point sets we intend to employ are so-called digital (t,m, s)-
nets over the finite field F,. (¢,m,s) nets were originally introduced by
H. Niederreiter in [I3]. These are special point sets consisting of ¢ points



in [0,1)° for which it is known that the parameter ¢ indicates how well the
points are distributed in [0,1)* (cf. [5, Chapter 5.5.1], for instance). Now,
digital (¢,m, s)-nets over F, are (¢, m, s)-nets which are constructed from a
choice of s freely selectable m xm matrices over IF, and which constitute the
most widely used construction scheme for (t,m, s)-nets in practical applica-
tions, (cf. [6, p. 158]).

For determining the quality of applying digital nets in QMC-integration
in Ha1,5,3, With respect to the speed of convergence we are mainly interested
in two things, namely the worst-case error and (strong) tractability. The first
term hereby indicates how large the actual error, i.e.

1 n
J, PO X

can get for f taken from the closed unit ball of 7%, s 3~ and for given sample
points X1, ...,X,. Whereas the term tractability so to speak states whether
there exists a QMC-rule such that the minimal number of points necessary
to attain a certain error bound € € (0, 1) is of magnitude order s’¢~® for every
seN,a,b>0. If b =0 we speak of strong tractability.

So, consequently, in this thesis it is investigated, how large the worst-case
error actually is and whether, or, more precisely, under which conditions
integration in .55~ is (strongly) tractable and above all, if there exist
digital nets such that (strong) tractability can be exploited. It is to mention
that finding the answer to these questions is vastly faciliated by exploiting
the fact that J%.1 55, is a reproducing kernel Hilbert space.

Moreover, since the study of the above paragraph merely provides ex-
istence results, the fifth chapter of this thesis is dedicated to present four
well-known algorithms to construct digital nets over F, — namely the con-
struction method by Niederreiter, the construction method by Sobol‘ and
another two for constructing polynomial lattices — which fulfill the above
properties.

As a matter of fact, much of the theory given in this thesis has already
been established in [3, 4, B, 6] for the case where ¢ is a prime number.
Therefore, the integral part of this work is to extend the definitions given
therein, to adapt the results accordingly and to adjust or renew the proofs of
these results. Furthermore, the fact that %, s s~ actually is a (reproducing
kernel) Hilbert space shall be demonstrated in a clear and precise way.
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2 The reproducing kernel Hilbert space 7, s 5~

2.1 General theory on reproducing kernel Hilbert spaces

This section is dedicated to briefly discuss reproducing kernels and reproduc-
ing kernel Hilbert spaces and some of their basic properties. First off, we
need to define the respective terms.

Definition 2.1 (Reproducing kernel Hilbert space). Let . be a Hilbert
space of functions f: X — C, where X is a given set. Let the inner
product on # be denoted by {-,-). Then JZ is a reproducing kernel
Hilbert space iff there exists a function K : X x X — C for which the
following two properties hold:

(RK1) Vye X: K(-,y) € # and
(RK2) Vye X Vfet: fly) ={f,K(,y),

where K (-,y) is viewed at as a function in the first variable and also the
inner product is taken with respect to the first variable.

A function K satisfying the above properties is referred to as a
reproducing kernel for . Additionally, it should be mentioned that
(RK2) in the above definition is called reproducing property.

(cf. [5, Definition 2.5])

Certainly, a comprehensive theory has evolved around reproducing kernel
Hilbert spaces (see [1], for instance). In order to let the reader become more
familiar with this concept the proposition below summarizes some of their
basic properties.

Proposition 2.2. Let X be a set. Then the following holds:

(i) Let 7 be a Hilbert space of functions f : X — C. Then a repro-
ducing kernel for 7 exists if and only if the linear functional

T,: A — C
fo— f (1)
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is bounded for every y € X (cf. [1, p. 343, item 2]).

Furthermore, a function K : XxX — C which fulfills (RK1) and (RK2)
18

(i1) symmetric, i.e.

Vr,ye Xt K(z,y) = K(y,z),

(111) positive semi-definite, which means that
VYneN Vag,...,a,_1€C Vzq,...,2p-1€ X

it holds that

n—1

Z diajK(xi,xj) = 0,

i,j=0

(i) and unique (cf. [5, p. 22, items P3, P5, P4 and Remark 2.7]).

Proof. (Item (i) taken from [I, pp. 343f], items (ii)-(iv) adapted from [5]
p. 22]).

Let X be a set.

(i) Let S be as stated above and T}, be defined as in (1)) for an arbitrary
y € X. Furthermore, let K be a reproducing kernel for 7. By using
the reproducing property of K in the second step for f one obtains

Ty f1 = 1FW)l= [KF K G y)l
< 1Ayl

as a consequence of the Cauchy-Schwarz inequality. Since — due to
(RK1) - the function K(-,y) is in %, we may deduce that T is
bounded.

Conversely, assume that T}, defined by T, f = f(y) is a bounded func-
tional for every y € X. Then, from Riesz’ representation theorem it
follows that there exists a function k, € % such that

fly) = {fky)
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for every f e . Clearly, K(z,y) := ky(x) is a reproducing kernel for
H.

Now, let K: X x X — C be a function satisfying (RK1) and (RK2).
(ii) The symmetry of K (z,y) follows from the fact that

K(z,y) = (K(, ), K(2)) = (K(, @), K( ) = K(y, 2).

(iii) Let n € N. Then, for any choice of ag,...,a, 1 € C and for every
xg,...,Ty—1 € X it holds that

n—1 n—1
D) K (wi ) = ) (K (- x5), K (- 2)))
i.j=0 ij=0

n—1 n—1
= Z a; K (-, z;), Z aiK(-,xi)>
j=0 =0

n—1 2
2 a’iK<'7 xl)
=0

>0,

which proves the statement.

(iv) For the uniqueness part assume that there exist two functions K and K
mapping from X x X onto C which satisfy (RK1) and (RK2) and therefore
also (ii). Then,

f((l‘,y) = <f(<'ay)>K(‘vx)> = <K('7"L‘)7K('7y)> = K(y,l‘) = K(Zt,y)
for every x,y € X. ]

Later, in Section [d], the concept of reproducing kernel Hilbert spaces will
be used to obtain error bounds for Quasi-Monte Carlo-rules (QMC-rules).
As these entail evaluating a function f at previously chosen sample points,
it seems to be a reasonable prerequisite that the functional 7}, from Propo-
sition [2.2(i) is continuous (cf. [B, p. 25]) and this is, as we have just seen,
equivalent to the existence of a reproducing kernel.

Another interesting fact (among many others) is given by N. Aronszajn
in [T, p. 344]. It states that any bivariate function fulfilling items (ii) and (iii)
from Proposition [2.2] i.e. symmetry and positive semi-definiteness, already
uniquely determines a reproducing kernel Hilbert space and its inner product.
This justifies the usage of “reproducing kernel” as a stand-alone term.
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2.2 Generalized Walsh functions over a finite field

Generalized Walsh functions may appear in many different forms. For in-
stance in [0, Definitions 1, 2] one can find a definition of such using a general
integer base b > 2, or, as G. Pirsic did in [I5, Definition 9], they can also be
defined over groups. The aim of this chapter is to introduce Walsh functions
over the finite field IF,, where ¢ is a prime power. For the following introduc-
tory part we closely follow [16] p. 388].

In all of what follows let ¢ = p", where p is a prime number and r € N.
Furthermore, for every positive integer b we denote by 7Z; the residue class
ring modulo b, which we will usually identify with the least residue system
modulo b, i.e. {0,1,...,b— 1}. Additionally, let ¢;: Z, — F, be a bijection
with ¢1(0) = 0, i.e. the zero element of Z, is mapped onto the zero element
of IF,. It follows from general theory of finite fields that there exists an iso-
morphism between the additive groups F, and Z;, name it ¢. By setting
7 1= 1 o (1 one obtains the commutative diagram given in Figure 1.

Z, L F,
" P
Z,

Figure 1: Commutative diagram, (cf. [16, Definition 2.3]).

This leads to the definition of those generalized Walsh functions which
will be investigated in this thesis.

Definition 2.3 (Generalized Walsh functions). First, we consider the
one-dimensional case. To this end, let ¢ = p", 1, ¥ and n be as de-
scribed in the paragraph above. Additionally, let k € Ny have the base ¢
representation k = ki +raq+- - -+r,g™ " where k; € Z, forall 1 < j < m.

Furthermore, identify x € [0, 1), too, with its base ¢ representation,
ie. x = x1¢7' + 29¢72% + ---. For reasons of uniqueness of this represen-
tation it is demanded, that for any natural j there exists an index jyo = j
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such that z;, is different from ¢ — 1.

Then we call the function

Fopwaly 1 [0,1) — C

the one-dimensional kth generalized Walsh function over [F, with respect
to ¢y, where “1i” denotes the imaginary unit and “” stands for the
Euklidean product

Now, the s-dimensional case can be constructed from the above one.
For this reason let s > 2, x = (z1,...,2,) €[0,1)° and k = (ky,...,k,) €

Nj. The respective multivariate generalized Walsh function is then de-
fined as g, ,, walg: [0,1)" — C,

S
Fyypr Walk (X) 1= H]Fq,cplwalkj ().
=1

(cf. [16], Definition 2.3)

To avoid tedious notation the subscripts I, and ¢; will be omitted from
now on, unless they are required to overcome ambiguities. So, simply the
abbreviation waly, (or waly respectively) will be used. Also, in what follows
the term “generalized” will be dropped most of the time.

2.3 Basic properties of generalized Walsh functions over
F,

In this section we aim at gathering important information on Walsh functions
defined over a finite field, some of which will be of essential use later. For a
better understanding it is necessary to point out that the variables ¢ = p"
as well as the mappings o1, ¥ and n = ¥ o ¢; have already been arbitrarily
chosen or defined in the first paragraph of Section [2.2]

First of all, we introduce two binary operations ®,, and ©,,.
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Definition 2.4. Let z = >° x;¢g " and y = >..° y:,q~', w € Z. Then,

0

T Dy, Y = Z aiq”',  where a; = 7 (pr(i) + @1(w)),

=W

0
TOp Y = Z big™',  where b = ¢y (p1(x:) — 1 (%)

t=w

Additionally, ©,,z is set as 0 ©,,  and if x and y are vectors of
the same dimension the above operations are understood as being taken

componentwise.

In accordance to Definition it is required that the sequences a;
and b; as given above do not possess infinitely many consecutive elements
equal to ¢ — 1, otherwise we consider the operation not defined.

(cf. [16] p. 388])

Again, one should keep in mind that the operations ®,, and ©,, as de-
fined above depend on ;. As ¢; is considered being arbitrarily chosen,
however, the more convenient notation @ and © will be used from now on.

The following theorem provides a close connection between the product
of Walsh functions and the binary operations from above.

Theorem 2.5. For all k, | € Ny and all z, y € [0,1) it holds that

walg () wal)(x) = walggy(x) and  walg(z)wal)(z) = walyg (),
walg () walg(y) = walg(zr @y) and walg(x)walg(y) = waly(z 0 vy),

wherever x @y and x Oy respectively is defined.

(cf. [16, Proposition 2.4, item 1])

Proof. Let k= k1 + -+ kg™ L l=M+ -+ A\pg™ Land o = g7 +
22q~ 2+ --- be the base g representations of k,[ and z. Then it follows from
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the facts that v is an isomorphism and ¢ = 7o ¢;* that

waly (x) wal;(x) =

[T (21 otes) - (105) + 1) )
“ oo

[Low

walg

( ¥ (k) + 901(/\j)))
(27r1

p
().
The proofs of the other identities follow exactly the same pattern. It is

only left to mention that complex conjugation yields a minus in the exponent
and therefore a “@” is obtained in the end. [

1) -no o (er(m) + o1 >))

If one takes a closer look on the definition of Walsh functions over F, one
might notice that these are step functions, which is indeed the case, as the
following lemma shows.

Lemma 2.6. Let £k € N and m be a positive integer such that
g™t < k < ¢™. Then the restriction of wal, to an interval of the
form [a/q™, (a +1)/¢™) < [0,1) is walg(a/q™) identically. Furthermore,
Walo =1.

(cf. [, Proposition A.2])

Proof. Here, we use the same approach as in [5, pp. 559f.]. Since ¢™ ! <
k < ¢™ the g-adic expansion of k is of the form k = k1 + kog + - - - + Kpmg™ L.
Let a = aq + aaq + -+ + ;g™ ! be the g-adic expansion of an integer a,
0<a<q™ Thus, J = [a/q™, (a+1)/q™) is contained in [0, 1).

Any x € J possesses a g-adic expansion of the form
T =g ot g+ b1 Y g Y

with suitable digits §;, 0 < & < ¢—1, j = m+ 1. We notice that the first m
summands are the same as those in the g-adic expansion of a/q™. We now
consider this observation in our definition of Walsh functions (Definition
and obtain
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Ui 2mi a
waly(x) = H (— n(k) - n(amﬂl)) = waly (q—m) .

If £ = 0 we use the fact that ¢;(0) = 0 in [F, and, since ¢ is an isomor-
phism, we have 1(0) = 0, the zero element in Zy, and thus 5(0) = 0. From
this one sees immediately that for any x € [0, 1) it holds that waly(z) = 1. O

By exploiting the result of this lemma we obtain another interesting prop-
erty of Walsh functions over F,.

Lemma 2.7. We have

1 1
f walp(z)der =1 and f walg(x)de =0 ifkeN.
0 0

(cf. [16, Proposition 2.4, item 3])

Proof. The first identity follows immediately from Lemma[2.6] as waly(z) = 1
for any x € [0,1).

Now, assume that k € N with g-adic expansion k1 + kaq + -+ + Kpg™ !
Then, as it was also done in the proof of [5 Proposition A.9], by applying
Lemma the integral can be rewritten in the following way:

1 q m—1 q"—1 a
J Walk( J Walk Z Walk <—> .
0 s =0 qm

This equals zero, for if 0 < a < ¢ with g-adic expansion

a=ay+aq+ -+ ang™

then a/¢™ has the g-adic expansion

a
i g o =g A A"

Therefore we can adapt the proof of [5, Lemma A.8] to our purposes and
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obtain

7! a IS i i

Z waly, (—m) = Z exp (— 7](/11) '77(@1)) - exp (— ﬁ(ﬁm) . n(am))
a=0 q a=0 p p

_ ﬁ (2 e (2 () 77(]')))
11 X ew (B mra) ).

since ¢ = p" and n: Zq — Z,, is bijective.

For 1 <1l <mand 1< j <7 we denote by ') (k;) the jth component of
the vector n(k;), i.e

() = (k) (k)

where y T denotes the transpose of a vector y.

Now we can continue as follows:
m omi m (R omi
H Z exp <? 77(/11)‘&) = H (Z exp <? n(])(nl)a)> :

As k > 0 we know that there exists a pair of integers (ly, jo), 1 < lop < m and
1 < jo < r, such that 70 (x;,) # 0. For such a pair the sum in the above
expression is a geometric sum which simplifies to

p_1 ' — i o)
2 . 1 —exp (271 K
> exp (% n<fo><mo>a) _ Lo (o ()

a=0 1 —exp (27” W(jO)(“lo))

Thus, the whole double-product equals zero and hence

1
f waly(z)dx =0

0

for k € N. O]

With this knowledge it is now easy to prove the following orthogonality
properties.
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Theorem 2.8. For any k,l € Ny we have

Jl waly (x)wal;(z) dx = { L af k=1,

0 0 else.

(cf. [16, Proposition 2.4, item 4])

Proof. (Adapted from [5, Proposition A.10].)

From Theorem 2.5 we know that

1 1
f walg (z)wal;(z) dz = J walgoy () d.
0

0

Now, since ¢; is bijective and ¢1(0) = 0 in F, it follows that
keol=0 <<= k=I.
Applying Lemma completes the proof. ]

Another very important result has been shown by G. Pirsic in [15], Satz 3],
stating that the system of Walsh functions over groups (as defined therein) is
dense in Ly([0,1)") for any dimension s > 1. As a special case of this result
together with Theorem [2.§ we obtain:

Theorem 2.9. Let s = 1 be an integer. Then {waly : k € N§} is a com-
plete orthonormal system in Ly([0,1)%).

Proof. Can be found in [I5, Satz 3. O

Note that, due to this result, we can assign any function f which is square
integrable on [0, 1) to a series of the form

Z f Walk (2)

keNg

where
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Later, in Section we will call a series as given in a generalized Walsh
series, where the coefficient f(k) will be referred to as the kth Walsh-Fourier
coefficient (see [6, p. 154], for instance).

Moreover, according to [5, Theorem A.20], we can even obtain equality
in if f is continuous and

2

keNj

f(k)‘ < 0.

To provide the reader with a better overview, the next proposition sum-
marizes and generalizes the results shown so far for Walsh functions over
F

q-

Proposition 2.10. Let s > 1 be an integer.

(i) For all'k, 1€ N and for all x, y € [0,1)° the following identities
hold:

waly (x) wal)(x)=walygi(x) and waly(x)wal;(x)=walye (%),

waly (x) walk (y)=walk (x ®y) and waly(x)wal,(y)=walx(xOy),
provided that X ®y and x Oy are defined.

(ii) Denote by 0 = (0,...,0)" the s-dimensional zero vector. Then:

J walg(x) dx =1 and J walg(x)dx =0 ifke N°.
[0,1) [0,1)*

(i1i) The system {waly : k € Nj} is a complete orthonormal system in
L ([0,1)%).

(cf. [16, Proposition 2.4])

Proof. Ttem (i) follows immediately from the one-dimensional case (Theo-
rem and the definition of multivariate Walsh functions. Item (ii) can
easily be derived from Lemma by a straightforward application of Fubini
and for item (iii) we once again refer to [I5], Satz 3]. O

Now we dispose of all necessary requirements to define and work with the
weighted Hilbert space a1,
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2.4 The weighted Hilbert space of generalized Walsh
series

In this section we will follow the approach used by J. Dick and F. Pil-
lichshammer in [6, Section 2.2] or by G. Pirsic and F. Pillichshammer in
[T7, pp. 411f]. This means we introduce the one-dimensional weighted
Hilbert space of functions .7 5, first and consider the general case later,
as many results do not need a lot of improvements in order to be generalized.
In fact, the s-dimensional space will simply be defined as the tensor product
of s one-dimensional spaces.

2.4.1 The one-dimensional case

From now on let § > 1. Then, for v > 0 and k € Ny, we define

1 if k=0,
r(B,7, k) = { g Pllosg k] if keN, @)

(cf. [T, p. 411]).

Again, the dependency of r(3,~, k) on ¢ is neglected in this way of nota-
tion, as we consider it fixed.

Furthermore, following the discussion from the paragraph after Theo-
rem [2.9] we will now introduce generalized Walsh series.

Definition 2.11 (Generalized Walsh series). A generalized Walsh series
is a function f which is representable by a series of the form

Fa) = 3 (k) wali(a),
k=0

where z € [0,1) and f(k) € C are the so-called Walsh-Fourier coefficients.

(cf. [5], Definition A.14])

Once more we would like to point out, that we will usually simply refer
to such as Walsh series.
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The term Walsh-Fourier coefficient seems to be chosen rather inappropri-
ately, as, at a first glance, it is not obviously related to a Fourier coefficient.
By a short review of the Lo-case (see (3))), however, one can convince oneself
of the contrary.

Besides, note that whenever a Walsh series is uniformly convergent we
can apply the theorem of dominated convergence to find that

Thm Z J wal;(z)walg(z) dz

for every k € Ny (cf. [5, Remark A.15]). Thus we have an analogous result
as in (3)).

= o

w —
Z ) wal;(z)walg(x) dx

z)wal(z) dz (5)

The next step to arrive at a Hilbert space is to define an inner product.
So, for Walsh series f and g with Walsh-Fourier coefficients f(k) and §(k)
respectively, k € Ny, we set

0

f Puwaley = D, (B7, k)7 f (k) §(k).

k=0

Furthermore, we define

Hoal pry = {f = Z f(k)waly : f(k) e C and (f, Pwary < oo} ,

(cf. [I7, p. 411)).

Indeed, (-, -)wai, is an inner product, as the following lemma shows.

Lemma 2.12. J%,, 3, being defined as above is a pre-Hilbert space.

Proof. We need to show that (-, - )1, satisfies all properties of an inner prod-
uct. It is obvious that symmetry and linearity in the first argument hold.
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For positive definiteness we consider an arbitrary Walsh series
w A
fla) = Y (k) wal(x),
k=0

x €[0,1), and, since r(8,v, k) > 0 for any k € Ny, we immediately see that

0

U Py = (87,0 k)|

k=0

A\
o

Now, if we assume {f, f)waly = 0, the above implies that f(k) = 0 for all
k € Ny. Inserting this into the definition of f shows that f has to be the zero
function. O

The following argument is taken from an adendum to [6] by J. Dick.

Remark 2.13. From Lemma 2.12] we deduce that we cannot find two differ-
ent functions f, g € Harp., for which f(k) = §(k) holds for all k € Ny, where
f(k), §(k) denote the respective Walsh-Fourier coefficients, as this would vi-
olate positive definiteness of the inner product. Hence, %, 5, contains only
those functions f which are equal to Y, f (k) walg(z) everywhere on [0, 1)
and which satisfy (f, f)waly < 0.

The only thing that keeps %15, from being a Hilbert space is com-
pleteness. This, however, is already the case due to the next lemma. As a
matter of fact, we will show a more general result which can also be referred
to in the higher dimensional case.

Lemma 2.14. Let ¢ = (¢)ren, be a sequence of positive real numbers.
On the set

0
2= {x = () ke, € C: Z cxlzr]? < oo}

k=0

we define an inner product by
0
<l’, y> = Z CkTkYk-
k=0

Then €2 is complete w.r.t. |- | = /().
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Proof. (Source: personal communication with G. Leobacher and F. Pillichsham-
mer)

It is clear that (-, -) actually is an inner product, as ¢ > 0 for all k € Ny,
so the definition makes sense.

For the completeness part consider a Cauchy sequence in ¢2, say (x(”))neN.
Then, the sequence (x,(cn))neN, too, is a Cauchy sequence for any k > 0, as we
have

(n) (m) 2

Ck ‘flfk - Ty l2 < ZCZ }:Ul(n) - xl(m)r = Hx(”) - x(m)H
1=0

for all n, m € N and all £ € Ny. Any such sequence (a:,(gn))neN, however,
converges towards a complex number and hence we obtain a sequence, call
ite = (xk)kEN()) with

(n)

xp = lim x}
n—0o0

for every k € Nj.

Now, let ¢ > 0. Since (z(™),ey is a Cauchy sequence there exists an
ng € N such that for any integers n, m > ng we have

i m? )2 2
‘ *xk‘<Hx - H<e

for all N € Ny. Hence, also

M=

ck‘xk —l’k )‘

T
o

holds for any non-negative integer N and m sufficiently large. Therefore we
obtain

MS

k‘xk—xk )‘ <6

i
o

for m = ng. This implies that z — 2(™ € ¢2 and hence z € /2. Consequently,
((),.en converges (towards x) in £2. 0

This allows us to introduce 7.1 5,4 as a Hilbert space.
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Corollary 2.15. Let v >0 and 8 > 1. Then

0

Hal gy 1= { Z k) waly, : A(k‘) € C and {f, f)way < oo}

1s a Hilbert space.

(cf. [IT, p. 411)).

Proof. From Lemma we already know that (-, -)yai is an inner product
on a8~ Furthermore, we can uniquely identify a function f € .44

with the sequence of its Walsh-Fourier coefficients, i.e. ( f (k)) (see Re-
k‘ENQ
mark [2.13]), and hence we can apply Lemma to find that a6 is

complete. n
Now we consider the function
o0
Kyatpo(2,y) = > 7(8,7, k) waly(v)waly (1),
k=0

(cf. [I7, p. 411]). To verify that this is the reproducing kernel for %, .-
we need to prove the following lemma first.

Lemma 2.16. Let v > 0, 8 > 1 and (3,7, k) be given as in (). Then
the following identity holds:

D r(B7. k) =1+ yu(B)
k=0
where B( )
. q97\q —
i) = =5
(cf. [6, p. 155])

Proof. By the definition of 7(f,, k) we have

ee] a0
DBy k) = 147 ) g osat,
k=0

k=1
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Now, consider a fixed £ € N. For such a k we can find an a € Ny such that
q* < k < ¢**'. Therefore it is true that a < log,(k) < a 4+ 1 and hence
a = [log, k|. With this we are able to simplify the above infinite sum in the
same way as it was done in [6, p. 155], giving

0 q*t1-1 e
2 Bllog, k| :Z —Ba 2 1 Z a a+1 a)

k=1 a=0 k=q2 a=0
0
(q—1) Z ()"

Since 3 > 1 we have ¢'=# < 1, which means that the above expression is a
geometric series. Thus, we finally obtain

= 1 flg—1
Zr(ﬂ,%kz) = 1+7(C]—1)1_—1_5 = 1+7% =1+u(8).
k=0 q 9" —q

Theorem 2.17. The previously defined function
w —
Kwalﬂw x y Z 6 ’77 Walk(x)walk(y)

is the reproducing kernel for the weighted Hilbert space a1 -

(cf. [T, p. 411))

Proof.

(RK1) We need to show that for any y € [0,1) we have Kyap~(,y) €
%al,ﬁ;y; i.e.

Vyel0,1): || Kyasy (s y)llway < 0.

Obviously, Kyais-(-,y) is a Walsh series with Walsh-Fourier coefficients

A

Kar gy (5 9) (k) = (8,7, F)waly(y) (6)
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for y € [0,1) and all k € Ny. Hence we obtain (cf. [6, p. 155])
»© . 2
HKwal,ﬁfY('? y) Hsval,'y = Z T(ﬁ? Y5 k)il ’Kwal,/ﬁ,’y('a y)(k)’
0

b
Il

I
RE

r(B,7,k) ‘W(y)r

B

8 i
(=]

= ) 1(8,7,k).
0

>
Il

As the latter expression equals 1 + yu(f) (see Lemma [2.16)) it is finite
and thus Kyap(-,y) € Hea . for all y € [0, 1).

(RK2) We know that any function f € %, 5, can be written as

oe]

f(iL') = Z fWal(k) Walk(l‘)

k=0

Therefore, for all f € Ha5- and y € [0,1) we have

s Koty 2 F k) walk(y) = f(y).

k=0

(cf. [6, p. 155]). This completes the proof.

Even though we have found the reproducing kernel for J#, 5., it is not
yet of practical use, as by definition it involves evaluating an infinite sum.
Fortunately, Kya1 5,4 possesses the very favorable property that it can be sim-
plified further. So the main emphasis of the subsequent paragraphs will be
on attaining a closed form which can be calculated computationally. To this
end we follow the steps given in [0, pp. 155f.] and adapt them accordingly.

Using the same trick as in the beginning of the proof of Lemma [2.16| we
obtain

a0
Kyapn(T,y) =1+ Z g Plosa k] waly (z)waly (y)
k=1
0 qa+1_1
=149 D) gt wal(z ©y)
a=0 k=q2
qa+171

-1 +72 q b Z waly,(z ©y). (7)

k=q2
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We will now proceed by breaking down the problem, starting with the
simplification of

a+1

Z waly(x©y), a€ Ny. (8)

Lemma 2.18. Let a € Ny and D, be as in (@ Furthermore, let 0 <
x,y < 1 with g-adic expansions x = x1q¢  + x0¢ 2+ andy = y1q¢ ' +
Yoq 2 + - -+ respectively. Then

0 316{1,...,@}3 Ti 7+ Yi,
Dy(z,y) =< (¢—1)q" Vie{l,...,a+1}: z; =y,
—q° else.

(cf. [6 p. 156))

Proof. Any k€ {q%, ¢+ 1,...,¢°"" — 1} has a g-adic expansion of the form
k = K1+ Kog+ ...+ Ka@® ' + Kor1q® with 1 < ka1 < ¢ and k; € Z, for
1 < i < a. Additionally, we abbreviate n(x;) — n(y;) as @, € Z, for all
1 <l <a+ 1. Then, similarly to [6, p. 156], we can rewrite D,(z,y) as

qeti—1 ¢t —1a+1 9ri
Z waly(z ©y) = Z HeXP <— n(k) - Ql)
k=q® k=q* [=1
qa+1_1

2mi 2mi
D, exp 777(%1)-91 +eexp ?n(ﬁaﬂ)-gaﬂ

Il
/I ~N &
2 a
|
0]
]
o}
VR
)
E
=
=
Q
+
AN
)
Q
+
-
~~
N~
X

Now, just as it was done in [0, p. 156] as well, we will distinguish between
two cases and adapt the respective steps.

Case 1: Jie {l,...,a}: x; # y;.
Then, since 7 is bijective and 7(0) = 0, we have g; € Z})\ {0}. Or, more

( (1) (T

precisely, for g, = (0;”/,...,0; ')’ we can say that there exists at least
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one index ry such that ng) # 0. W.lo.g. we set o = 1.
Furthermore, observe that the number of elements in Zj is p" = g.
Together with the fact that n: Z, — Z; is bijective this means that
every element of Z; appears exactly once in the sum below. Hence,
by rearranging of the summands and using the formula for a geometric
sum in the last but one step we obtain

ik ori omi
oo (T oea) - Seo (e

ki=0

I
™
= b
gML
@D
"
3
7N
[\)
Ei
N
kS
=)
NG
N————
v
X

Ly 2m ()
X H Z exp (7 zjo; )

Case 2: Vie{l,...,a}: z; =y,
This means that for every 1 < i < a we have g, = 0 and therefore

q—1 .

2mi

Daeci) = 3 e (2 nlran) - 00 )
Kat+1=1

If also T441 = Yay1, then, clearly, D,(z,y) = ¢*(¢ — 1).

S0 now we can assume Zq1 # Yo+1 and hence g, ., # 0. By inserting
this in @D we obtain

q—1 .
27
Do(z,y) = ¢ ( D D (7 M(Kat1) - Qa+1) - 1) = —¢",

Ra+1 =0

as we have already seen in the first case. O]
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It solely remains to simplify

0

Owarp(z,y) 1= Z G P Dy, y). (10)

a=0

Lemma 2.19. Let ¢pyap be defined by @) for x,y € [0,1) with g-adic

expansions T = x1q L + xo0q¢ 2+ -+ and y = y1q "+ y2q 2 + - . Then,
p(s) ifz =y,
wal,B\ T, = i0—1)(1— of v, # i, and
Puat (7 Y) u(B) — gD gy + 1) T # Y

x; =vy; for all v < ig,
where p(B) is defined as in Lemma [2.16}, i.e.

_¢’la—1)
p(B) e

(cf. [6, p. 156])

Proof. (Taken from [0, p. 156].)

First assume z = y. Then, Lemma implies that D,(x,y) = (¢ — 1)¢*
and hence

0

Pwalp(T,y) = (¢ — 1) 2 ¢ = u(B).

a=0

Let # = 2¢ ' +20¢ 2+ -~ and y = 11¢ " + 1242 + --- be the g-adic
expansions of x and y respectively. If x # y then there exists a smallest
index ¢ for which x;, # y;,. In this case we obtain D,(x,y) = ¢“(¢ — 1) for
a <ig—1and D;,_i(z,y) = —¢'. Furthermore, D,(x,y) is zero for all
a = 1p. Thus, we can rewrite ¢y as follows:
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o0
Guals(,y) = Y ¢ Dal(x,y)
a=0
O .
q . 1 Z —B(io— l)qzo—l
a=0
1 — q=A)lio=1) i
—(g—1) _ g Bl ()
1—qg'=p
_ (g—1)¢’ __q<1—ﬁ>uo—1>€f£2;:_ll _ gU-B)io-D)
3 _ 5 _
q° —q 7’ —q

= u(B) = ¢V (u(B) + 1).
O
Putting together the results of the above lemmas we have already found

the sought-for closed form of Ky p,. We summarize this fact in the next
theorem.

Theorem 2.20. Let f > 1. Then

Kwal,b’,'y(x> y) =1+ 7¢Wal,[3 ($, y)

holds for all x and y in [0,1) with q-adic expansions v = x1q~ " + Toq > +
cand y = y1q7 + Yoq 2 + -+ -, where

u(B) gy
Puarp(, ) = u(B) — gD (u(B) + 1) 2&3;ﬁ$$ﬁ<u
and @ (g—1)
M(ﬁ) = ¢ —q
(cf. [0, p. 156])

Proof. Continuing with Equation ([7)) and inserting the identities from Lemma
2.18) and Lemma [2.19] yields

0 qa+1 -1 0
Kupy(,y) =147 0% Y waly(zOy) = 1+7 ), ¢ "Dz, y)
a=0 k=q% a=0

=1+ 7¢wal,5 (.T, y) L
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Having proven this very useful formula for the reproducing kernel Ky 5.
we now move on to the general s-dimensional case.

2.4.2 The s-dimensional case

As it has already been mentioned beforehand, the weighted s-dimensional
Hilbert space J%a1,3~ Will simply be defined by the s-fold tensor product
of the corresponding one-dimensional spaces. However, it is not clear from
the outset that this actually leaves us with a reproducing kernel Hilbert space.

We start off by finding an appropriate inner product. This will be done
in a more general way within the next lemma.

Lemma 2.21. Let 74 and 6 be two pre-Hilbert spaces of functions
defined on a set X, with the inner products {-,-)1 and {-,-)s respectively.
We denote their tensor product by

H = T R Hs.

For .
flar ) = D) [P (@) 5 (22) €
k=1

and .
l l
g(x1,22) = > gt (1) g8 (22) € A,
=1

where n,me N, x; € X andfi(k),g§l)e%f0r1 <k<sn, 1<I<mand
1 =1,2, we define

Frgyi= D DU o (A5, 5.
k=11=1

Then {-, -y is an inner product on €, turning it into a pre-Hilbert space.

(cf. [1] p. 358])

Proof. (Taken from [Il, pp. 358t.].)

As f as well as g may admit of various representations of the above kind
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we need to show that {f, g) is invariant under different representations of f
and ¢g. For the function f this can be seen by

< :91 >1 <f2k)>92 )2

M=
Ms

(frg) =

B
Il
—
~
Il
—

<<f agll)>1yg2 >

|
M=
NgE

e
Il
—
—
Il
—

<<f7 g§l)>1) gél)>2

L

~
Il
—

In an analogous way we can prove that (f, g) is well-defined with respect to
the representation of g.

Obviously, (-,-) is symmetric and linear in the first argument. Thus, it
merely remains to show positive definiteness. For this reason we choose an
arbitrary representation of f € .7 of the form

f(z1,x2) Z xl f2 Ts), where f1 €A, f2 €6 and x1, 196 X.

As a first step, we orthonormalize the sequences ( f1 )1<k<n and ( f2 )1gk<n
in the respective spaces and denote the arising sequences by ( f1 ))1gk<n1 and
( f2 )1<k§n2 respectively. Secondly, we rewrite f as

ny ng

f(x1, 12) Zza“fl 1) s ( 2)

k=11=1

with suitable coefficients ay;. Hence, we may simplify as follows:

niy no e ny no -
S = a4, 707
k=11=1 i=1j=1
n1 n2 n1 N2 " I
- ZZZZaklaz,] <.f1 ) fl > <f2()a 2(])>
felim1i=1j=1 1 2
ny ng N1 N2

= Z Z Z Z 15 Ok i01, 5
k=11=1i=1j=1
niy no

=2 2 lawf?
k=11=1

> 0,
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where 6;; denotes the so-called Kronecker delta, i.e. for ¢, 7 € N we have

s _[1 ifi=j

TV 0 i
Furthermore, if we assume that (f, f) = 0, this immediately implies aj; =
0 for all 1 < k < np and 1 <1 < ny and therefore f(z1,22) = 0 and the
result follows. O

In what follows let v = (7j)1<j<s be a sequence of positive and non-
increasing real numbers. Applying the above lemma inductively on the s-fold
tensor product of the one-dimensional Hilbert spaces a5, 1 < J < s,
ie.

S
Hats pry = Q) Ay, = Hvalpon @+ ® Ha i

j=1

we get that J%a1 5 5~ is a pre-Hilbert space.

m s l
For f I H] 1 f € Halspy and g = 237, Hj:l gg(‘) € Hial,s,pys

where f , 0 ¢ Hal,p,y;, We can rewrite the inner product resulting from

j
Lemma , we denote it by {f, ¢)wal s, i the following way:

S

<f7 g>wal,s,‘y H<f ) g] >Wal,’yj (11)

22l
is (2 (B, 1) <>T),

7j=1 1=0

i M: i M:

where f (k) (7) and g ( ) denote the ith Walsh-Fourier coefficient of the func-

tions fj and gj respectively.

We use the same notation as in [5, p. 157], namely

r(8,7,k) HT 8,75, ks

and

for k = (ki,...,ks) € Nj and where f;(k;) stands for the k;th Walsh-Fourier
coefficient of a function f; € 5.1 6,,. This allows us to simplify further and
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we arrive at the same inner product as given in the aforementioned paper:

{fy Dwarsry = ZZZ (B,7.1) 7 P (1)g0 (i)

k=11=1ieNj
= 2, (B 1) F D)),
ieNg

By the same arguments as we had in Remark we can uniquely iden-
tify any function f € a1, by its sequence of Walsh-Fourier coefficients
( f (k))kens. Thus, we can exploit Lemma again to find that J&, s 5~ is
complete and is hence forming a Hilbert space, which allows us to make the
following definition.

Definition 2.22. Let s € Nand v = (71, ...,7s) be a sequence of positive
and non-increasing real numbers. Then we define the weighted Hilbert
space Hyal,s 5,y S

S
%Val,sﬂf)’ = ® %al’ﬂ77j = %317[3)71 ® e ® %al’ﬁ”}%'

7=1

Furthermore, for k = (ky,..., ks) € N we set

r(8,7,k) Hrm,

and

v

:’w
—

Jj=1

where f;(k;) denotes the k;th Walsh-Fourier coefficient of f; € Hal By
and define the inner product on J%,1 5~ by

e Doy = 2 7B K7 f(k)g(k).

keNg

(Adapted from [17, pp. 411f.].)

The next step is to find a reproducing kernel for %1 3,~-
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Theorem 2.23. The function

Kwal,s,ﬁ,’y (X7 y> = H Kwal,ﬂ,'yj (*rjv yj>7

j=1

where x, y €[0,1)°, x = (x1,...,25) andy = (y1,...,¥s), is a reproduc-
ing kernel for Fas.~-

(cf. [I7, p. 411])

Proof. By definition, %3~ comprises only functions of the form f =
S, H;:l fj(k) with f;k) € Halpn, 1 < J < sandn e N So, clearly,
Kwal,s,ﬂ,’)’('7 Y> € %val,s,ﬁ,‘y for any y € [07 1>8

Furthermore, for all functions f € J%.,3~, Which are certainly of the
above type, and for all y = (y1,...,¥s) in [0,1)° we have

i) = Y%

k=1j=1

n S .
Z H<fj( )7 Kval . (5 yj)>Wal,’yj

k=1j=1

(1)
! <f> Kwal,s,ﬂ,’v('v Y)>Wa1,5,7a

since Kyal,6,; 1s the reproducing kernel of the one-dimensional space a1 5,5, 5
I<j<s. O

Remark 2.24. The reproducing kernel from the above theorem can be writ-
ten in several ways, based on Theorem [2.20 as the equations below show
(cf. [I7, p. 411]):
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S

Kwal,s,ﬂ,'y (X, y) = Kwal,ﬂ,'yj (xja ?/g)

<.
Il
—_

(1 +’7j¢wal,ﬁ($j7yj>> (12)

I
.

—
I

» |

8

T(ﬁa Vis k]) Walk]- (xj)walkj (yj)
0

—_

.

k;

= (8,7, k) wal, (x)waly (y). (13)

S
eNg

=

So, by we see that Kyal s 3, t00, can be computed rather easily (cf. [6],
p. 157]) and Equation indicates that we have an analogous form of the
reproducing kernel as we had in the one-dimensional case (see Theorem [2.17)).
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3 Digital (¢,m, s)-nets

3.1 Motivation and general construction

In order to proceed towards multivariate integration in the weighted Hilbert
space Hqals,3,~ as introduced in Section [2.4] we move on with special types of
point sets, namely digital (t,m, s)-nets over the finite field F,. For a survey
on this topic see [, Chapter 4.4], for instance. For this choice of point sets
we will show error estimations for QMC-rules in the next section. Let us
begin by defining the term elementary interval.

Definition 3.1 (Elementary interval). Let s, k € N. Additionally, let b >
2 be an integer. Then we call an interval £ an s-dimensional elementary

interval in base b of order k iff there exist non-negative integers di, . .., ds
and Ay,..., Ay e Ny with })7  d; =k and A; < b% for all 1 < i < s such

that
STA A +1
E:,l[ww)-

(cf. [5, Definition 3.8])

The notion of introducing (digital) (¢, m, s)-nets is to find a finite point
set P which best represents an elementary interval £. By this we mean that
the relative number of points in P n E equals the Lebesgue measure of F,
i.e. \(E), or, in short:

#(P nE)
#P

where #X denotes the cardinality of a finite set X (cf. [5, Definition 4.2]).
Noticing that A(E) = b=%~~% Jeads to the following definition of (¢,m, s)-
nets, which was first given by H. Niederreiter in [I3], see also [14].

~A(E)| =0, (14)

Definition 3.2 ((¢,m,s)-net). Let t,m,s be integers with s,m > 1,
0<t<mandb=>=2 A point set P < [0,1)° consisting of exactly b™
points is called a (t,m, s)-net in base b iff every elementary interval F of
order m — t contains exactly b* points of P, i.e. #(P n E) = b".

(cf. [13, Definition 2.2])
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Note that, in this setting, we have

#(PnE)

bt
T —

— _p(m=t)
bm

—A(E)‘ - —0,

(cf. [13, Remark 2.3]), and thus (¢, m, s)-nets fulfill the desired property (14)).

For the existence of (t,m,s)-nets for certain choices of the parameters
t,m and s as well as for general results on the theory of (¢,m, s)-nets see
[5, Chapter 4.2] or [13], for example. Here, we only mention two important
properties.

Remark 3.3.

e Any point set with 0™ elements, b > 2, is at least an (m,m, s)-net in
base b (cf. [5, Remark 4.9, item 3]) and

e if the so-called quality parameter t of a (t,m, s)-net is small, then it
has good distribution properties, as can be seen for example in [5]
Chapter 5.5.1].

For practical applications, (¢, m, s)-nets in base b > 2 are usually obtained
by constructing so-called digital (t,m,s)-nets (cf. [4, p. 1898]). As our
working space is still %155~ We restrict ourselves to the case, where b =
q = p", with p prime and r € N. Also, we need to recall the definition of ¢y,
which is a fixed bijection from Z, onto F, with ¢;(0) = 0, where 0 denotes
the neutral element in the corresponding addiditve group (see the beginning
of Section [2.2)).

Definition 3.4 (Digital (¢, m, s)-net). Let ¢ and ¢; be defined as above
and let s,m € N. Furthermore, let (', ..., Cs be m xm matrices over F,,.
For every integer 0 < h < ¢™ we denote by

h=h1+h2q+---+hmqm*1
its g-adic expansion and identify the vector h € Fi" with

h = (1(h), ..., ¢1(hm)) -

We construct a point set P consisting of exactly ¢ points as follows. For
1 <7 <5 weset
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1.
.
C;h' = (y( J(h), ,yj(m)(h)) € (Fm)T
and
2 (1) (m)
, L (b =L m(p,
O (y; (h) @ (E;Jm (h))

For a fixed 0 < h < ¢™ we assemble the above quantities into a vector

Xp = (xgl), e ,xi?)

and define the point set P by
Pi={xp: 0<h<q™}.

At this point it should be added that, as we do not put any regularity
constraints on the matrices C1, ..., s, we allow a point to appear more
than once in P. So the cardinality of such a point set is always ¢".

Now, if there exists an integer parameter 0 < ¢ < m such that P is
a (t,m, s)-net in base ¢, then we call P a digital (t,m,s)-net (over F)
with generating matrices C}, 1 < j < s. Often, we will simply refer to
such as digital nets, if it is clear or not of importance which parameters
t, m and s are taken into consideration.

(cf. [17, Definition 2))

Since the determination of the parameter ¢ is not of concern for this thesis,
we refer to [5, Theorem 4.52] for the proof of the following lemma.

Lemma 3.5. Let P be a point set constructed according to the above
principle, using the generating matrices Cy,...,Cs € Fg™™. Then, P s
a (m — o,m, s)-net in base q, where o = o(C1,...,Cs) is defined as the
largest integer for which it holds that for any choice of dy,...,ds € Ny
with di + - -+ + dgs = 0 we have that
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e the first di row vectors of Cy together with
e the first dy row vectors of Cy together with

e the first ds row vectors of Cs

are linearly independent over F,,.

3.2 The algebraic structure of digital nets

The main advantage of using the concept of digital nets, apart from its good
distribution properties (see Remark or [5 Chapter 5.5.1], for instance),
lies in the fact that, together with the operation @ (see Definition , digital
nets form an abelian group, as the lemma below shows.

Theorem 3.6. Let P = {Xq,...,X,m_1} be a digital (t,m,s)-net over F,
with generating matrices Cy,...,Cs. Then (P,@®) is an abelian group.

(cf. [5, Lemma 4.72])

Proof. Apparently, due to the definition of @, associativity and commutativ-
ity hold.

Let 0 < k,l < ¢™ be integers. Then, using the same notation as in
Definition the i-th component of the vector x; € P, i.e. :c,(;), is given by

LW (g =1, (k
20 _ 1 (y;())+”+901 (Zm())’ l<i<s

where

ain = ¢ (2106 G 0) + o100 ) = et (50 + 5 0) -
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In the next step we notice that by the definition of digital nets we have

yM (k) + oy (1)
Ci(k+1)" =Ck" +Ci1" = ;

™ (k) + 4™ (1)

foralll <i<s, wherek = (¢1(k1), ..., p1(kn)) and 1 = (o1(lr), ..., ¢1(ln)),
k=Fk +koq+-kpgm tandl =1 +1loqg+ - 1,g™ ' Thus, (x, ®x;)? is
generated by Cj(k +1)T.

Since F;" comprises exactly ¢" elements — which at the same time equals
the number of points in the digital net — and as we can get any of those
elements through k +1 for suitable k, 1 € Fi", there is a one to one correspon-
dence between x; @ x; and the vectors C;(k +1)7, 1 <4 < s. This already
proves that (P,®) is a semi-group.

The neutral element is given by the zero vector 0 € [0,1)° which is cer-
tainly contained in P, since it is obtained by applying the generating matri-
ces to the zero vector in Fi". For the inverse of an element x; € P, where
0 < k < ¢™, we simply need to find the inverse of k in F7", which is naturally
given by ©k. Consequently, all group axioms are fulfilled. ]

Exploiting the group structure of digital nets over I, allows us to prove
two very interesting properties.

Theorem 3.7. Let P be a digital (t,m,s)-net over F, with generating
matrices Cy, ...,Cs. Then the following holds:

(1) If the points of P are pairwise different then (P,®) is isomorphic
to (]F’q”, +).

(ii) For any h € N§ the function waly, is a character on (P,®).

(cf. [5l Lemma 4.72] for (i) and [6 p. 159] for the prime case of (ii))

Proof.
(i) As it was done in the proof of [5, Lemma 4.72] we define the mapping
v F— P

k'—>Xk
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where k is given by k = ki +kog+- - kg™ P and k = (o1(k1), ..., 01(km)).
From this definition we immediately get that ¥ is well defined.

Moreover, in the proof of Theorem (3.6 we have learned that for any k,
1 € F;" we can generate the point x; @ x; by applying the generating
matrices to k + 1. Therefore we have

Uk)dU(l) =xDx; = Uk +1).

So, ¥ is a homomorphism.

To prove injectivity we assume that W(k) = W(1), for some k, 1 € F}".
This means that x; = x;, where the g-adic digits of k£ and [ are deter-
mined by ;' applied to the entries of k and 1 respectively. Since the
points of P are mutually different this implies £ = [ and consequently
k=l.

Additionally, both F¢" and P comprise exactly ¢™ elements and hence
we get that U is bijective.

(ii) Just asin [6, p. 159] we fix h € Nj. Furthermore, let P = {xq,...,Xgm_1}
be a digital net over F,. Then waly, is a character on (P, @®) if and only
if

walh (Xk &) Xl) = Walh (Xk) Walh (Xl)

for any x, x; € P. This is true due to Proposition [2.10} ().
]

At this point, the reader is highly advised to go through the paragraphs
preceding Definition [2.3] as the definitions made therein are essential to the
proof of the next lemma.

Lemma 3.8. Let P = {xq,...,Xgm_1} be a digital (t,m, s)-net over F}'
generated by the mxm matrices C,...,Cs € F7*™ s € N. Additionally,
let k = (ki,...,ks) be a vector whose entries are non-negative integers,

all of which are strictly smaller than ¢™. Then

0 else,

a’—1 m Taell - T =
Z walk(xh) _ { q Zf Cl SOU{;I) + + Cs @<k8> 07
h=0
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where O denotes the zero vector in FJ' and ¢ @ Zgm — (F?)T s an
extension of o1 such that for k =Y kgt we have

(k) = (01(k1), - 1(km)) '

(cf. [16, Lemma 2.5])

Proof. At first, we adopt the preparatory paragraphs from [16, pp. 389f.].
Within this proof we will look at [F, as a vector space over Z,. This means
we consider F, = Z,[0] so that B = {1,6,...,0"'} is a basis for F,. Cer-
tainly, any = € F, can then (uniquely) be written as = Y, z;,6'" with
xi€lyfori=1,...,r.

For such an x we know that the isomorphism ¢ : F, — Z] is given by
() = (x1,...,x,). We now extend ¢ to m-dimensional vectors, m € N, i.e.
Y F' — Z;". Analogous to the original case we define n = ¢ o . In order
to provide the reader with a better overview we summarize these relations in
a commutative diagramm.

Lgn ——=TF"

q

rm
Zp

Figure 2: Commutative diagram of extensions, (cf. [16], p. 389]).

In the following paragraphs we will define a mapping ¥ of linear trans-
formations over I, into the linear transformations over Z,. For this reason
we represent 6" as a linear combination of the basis elements, i.e.

0" =0, +0,0+---+0,0" 0,€Z,

and define the matrix

000 - 0 6
100 - 0 6
o010 0 6
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Applying © to ¢(x), where x has the basis representation x = Y/, z;,6'" ",
yields
01:1:7’
1 x|+ 921‘7«
ol : |=| w2+ 0z,
T, :
Tr_q1 + 0.2,

If we now consider the linear transformation x — 0x we get

r—1
Oz = Z v = Z vl + 2,07 = Y b + 2 (6) + 020 + - + 0,67
i=1
= 91% (xl + 6’2%)9 + oot (T + Opx,)0

Comparing the results we have shown the identity

OU(z) = (6x) (15)

for all x € F,.

For an arbitrary « € F, with the representation o = >/, @;6""" with
respect to the basis B we define the map ¥ by the matrix

T

U(a) = Z a; 0",

i=1

If we now exploit and the fact that ¢ is an isomorphism we can easily
show that

U(a)y(x) = iai@i ! Zazw (0 'z) = (i aiﬁi_1x>

i=1 i=1 i=1

= ¢Y(ax) (16)
holds for all z € IF,.

The next step is to extend ¥ to matrices. This can be achieved by
applying ¥ to the entries of the respective matrix and subsequently letting
the hereby obtained matrices run together. With some abuse of notation,
this can be formulated as follows:

U(A) == (¥(ai;)),; € 2, "™ for A = (ai;), ; € F" ™,
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where mq, mo € N. Again we obtain
U(A)Y(x) = P(Ax), (17)

with x = (21,...,2m,)" € (FZ“)T, as a consequence of and the homo-
morphism property of ).

We now enter the actual proof of [16, Lemma 2.5]. To this end let
k = (ki,...,ks) €{0,...,¢™ — 1} and let the entry k;, 1 < j < s, have
the g-adic expansion k; = k1 + Kj2q + -+ + Kjmg™ '. The ith component
of the point x;, € P shall be denoted by z{’, 1 <i < sand 0 < h < ¢™.

From the construction scheme of digital nets we know that

) —1 (l)h —1 (m)h
20 _ £ (y; (h) ... ¢ (?j;m ( ))7

where ygl)(h), e ,ygm)(h) are as stated in Definition Therefore, for any

1 <1 < m, the [th ¢g-adic digit of xﬁf), we denote it by a:g’)l, is given by

2 = ot " (h) = et (c], - (b)),

where c;; is the [th row vector of the generating matrix C;. Hence we have

n(z)) = o oprt(el, - () = ¥(c), - p(h)),

1 < j <s. With these presettings we can proceed as follows:

2 waly (xp,) = 2 HHeXP (% (ki) 77@%7;))

o h=0 j=11=1
q"=1 s m :
27

— Z Hexp (— n(kj1) - (CjT,l : Sﬁ(h))) .
h=0 j=11=1 p
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Now, observe that
Z\I’ cja) (k) = (B(c/y), -, (e),) ki), - n(km)) T = W(C] )n(k;)

and therefore we arrive at

S o2 (S o))

Abbreviating the [th component of 377, U(C))n(k;) as o and further sim-
plifications yield

qmil . .
2mi 21
Z Wa1k<xh> = 2 €xXp <7 algl) ©eXDP (7 arm@rm)

h=0 (@1,e,0rm )ELG™

(S ()

In case there exists an index 1 < [y < rm such that g, # 0, then

due to a geometric sum argument and therefore the whole product equals to
zero. Clearly, if we have g; = 0 for every 1 < [ < rm, we obtain

qgm—1 rm [p—1 i
Z waly (xp,) = H (Z exp <7 am)) L —

h=0 =1 \a=0

Taking advantage of the fact that ¢ is an isomorphism in addition to using
and n = 1 o ¢ the condition g; = 0 holds for all 1 < < rm if and only

if
0= > U(C)mk;) = (Z wa(kj)) :
j=1 j=1
where 0 denotes the zero element in Z;m.

Note that, if ¢)(x) = 0, then z has to be zero, as 1 is an isomorphism
and therefore the above is true if and only if

Clo(k) + -+ Clo(ks) =0,
which proves the statement. O

By having proven this lemma we have finished all preparatory work nec-
essary to deal with the integration problem in the Hilbert space 5.1 ¢ 8.~ -
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4 Multivariate integration in the Hilbert space

Hal s,y

We will now focus on the approximation of integrals over the s-dimensional
unit cube by applying QMC-rules in the Hilbert space a1 s3,~. Apart
from proving general bounds for the so-called worst-case error we will also
use results of the previous chapters to investigate the application of digital
(t,m, s)-nets as sample points. Additionally, some effort will be put into
the determination of both necessary and sufficient conditions under which
applying a QMC-rule in %, 5 5.~ is tractable. That is, whether the number
of sample points required to attain a certain error bound is (at most) poly-
nomially dependent on the dimension s and the error itself.

To mathematically formalize the problem we need to introduce two func-
tionals. Let f be a function in %, 3~. Then, by I,(f) we denote

1,(f) = f[ LS

For the approximation of I;(f) we use a QMC-rule. This means, we deter-
ministically choose sample points g, ..., x,_1 € [0,1)” and compute

S ),

S|

Qn,s(f) =

(ct. [6, p. 161]).

First off, we will prove a very basic, but yet essential property of these
functionals.

Lemma 4.1. Let § > 1. Then the functionals I;(f) and Qns(f), as
defined above, are linear and bounded for f € Huas5.~-

Proof. Clearly, both I, and @), s are linear. For the proof of boundedness
we consider an arbitrary f(x) = ZkeNg f(k) walk(x) € s~ - Due to
Proposition [2.2 (i) the result follows immediately for Q.
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Now we consider I;(f). We have

(RK2)
() "< f[ K Ko Yol 0
0,15

< 1t j[ N Yy 0
0,1)*

From the proof of Theorem [2.17]it then follows that

s

0
ﬁo 1)5 HKwal,s,BfY(', y) Hwal,s,‘y dy < f[o 1)5 H Z T(ﬁ, ’}/j, kj) dy

j=1 \k;=0

s

bemme I8 1T (14 y(8)) < o0
j=1

for § > 1 and hence we are finished. m

Apart from the fact that we need the boundedness of I, in order to rea-
sonably consider the integration problem in J%,) s ~, it allows us to do the
following (cf. [B, Example 2.9]):

f <fa Kwal,s,,@,’y('a Y>>Wal,s,'y dy = <f7 Kwal,s,ﬁ,'y('7 Y) dY> )
[0,1)® [0,1)°

wal, s,y
(18)
f € Hyar,5,3,, as follows from the next lemma.

Lemma 4.2. Let 77 be a reproducing kernel Hilbert space of functions
with reproducing kernel K and inner product {-,-y. Furthermore, let T be
a linear and bounded functional on 7. Then,

T (f(@), K(xy)a) = (@), T (K(y.2)) .

where, in the above expression, we make the convention that T s applied
to a function in y and that the index of the inner product indicates the
variable with respect to which the inner product is taken.

(cf. [5, pp. 25f.])
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Proof. (Taken from [B, pp. 25f.])

Since T is linear and bounded by assumption it follows from Riesz’ rep-
resentation theorem that there exists exactly one function R € 77 sucht that
for all f € 7 we have that

T (f(y) = f(y), B(y))y-

Moreover, for all z in the domain of R

R(x) (R(y), K(y,z))y = (K(y,z),R(y)), = T(K(y, x))
holds, as K (y,x) € # for any fixed z. Hence,

T (f (). K () "2 T W) = (@), B@)e = (@) TEy.2)) -
O

(RK2)

The equation given in now follows from the symmetry of reproducing
kernels (see Proposition. By exploiting this result we obtain the following
identity:

Lemma 4.3. The representer of the functional I as defined above in the
Hilbert space Hya1 55~ 15 1, t.e. for any f € Hals s

]s(f) = <f> 1>Wal,s,'y
holds.

(cf. [6 p. 161])

Proof. 1t is easy to see that the Walsh series of Ky s 5~(X,y) is uniformly
convergent for every fixed x € [0,1)":

S r(8, 7, k) walx)wale(y)| ST (1 +u(8)) < o

keN3 i1
for § > 1. Therefore we obtain
———— . Prop.
j Kuaopn(xy)dy = Y. (8,7, k) wali(x) j wali(y) dy 2B
0,1)° Kenig [0,1)°

as a consequence of the theorem of dominated convergence. We insert this
identity into ([18) and together with (RK2) the result follows. O
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4.1 FError analysis for arbitrary QMC-rules

In the following the definitions of several quality parameters which are of
essential concern in this thesis are given. We will now briefly describe two of
them. Heuristically speaking, the worst-case error gives the largest possible
error which can be attained by using a specific QMC-rule for integration,
independent of which function in the unit ball of %5~ is to be approxi-
mated. Whereas QM C-tractability is used to examine if there exists a QMC-
rule for which one can link the size of the point set necessary to stay below
a certain error bound to a polynomial dependency on the dimension, viewed
at as a property of J.1 4.3~

Definition 4.4 (Worst-case error). Let I, and @, be as defined in
the beginning of this section. The worst-case error for integration in

Hal s 5.~ 15 defined by

€n,s = 6(@71,8) = sup |Is(f) - Qn,s(f)|

fe'yfwal,s,ﬁ,‘y’ Hwaal,s,—ygl

for n € N. As a reference value we introduce the initial error by

€o,s 1= sup IL(f)]-
f€fwal,s,6,77 ”waal,s,'yg]'

(cf. [6, Definition 5])

Since, in practice, we can only apply a finite number of sample points to
a QMC-algorithm, we are also interested in how many points are necessary
to attain a certain error bound.

Definition 4.5 (Information complexity). For s € N and real ¢ > 0 we
define the information complexity nmy (€, s) by

Nmin(€, 8) 1= min {n € Ny: 3Q, s such that e(Q,s) <€ eps}.

(cf. [6, Definition 5])

From Lemma [4.3] it immediately follows that
‘IS(fN = |<f> 1>Wal,s,'y| < Hf”wal,s,‘y-
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Therefore we have

€0,s = sup |<fa 1>Wa1787’7| = ||1Hx2;val,s,’y =1
f€<yfwal,s,ﬁ,‘yv Hwaal,s,’ygl

and hence
Nmin(€,8) = min {n € Nyo: 3Q, s such that e(Q, ) < €},

where s € N and € > 0, (cf. [6 p. 162]). Thus, the information com-
plexity gives the minimal number of function values needed to obtain an
e-approximation of an integral with a QMC-algorithm.

Often, one can obtain good asymptotic bounds for the worst-case error.
On the basis of these, however, it is not obvious how many sample points are
needed to make use of this asymptotic behavior, especially when it comes to
QMC-integration in higher dimensions, that is, for large s. This problem is
dealt with in the so-called tractability theory. Tractability hereby means to
have control over the dependency on the dimension and excludes those cases
for which ny, (€, s) grows exponentially in s and ¢

Definition 4.6 (QMC-tractability). Multivariate integration in
Hal,s 5, 18 said to be QMC-tractable ift

Ja,b,ceR, a,b,c=>0: Vse NVee (0,1): nm(e,s) <cs’e®  (19)

The infima of @ and b such that the above inequality holds are called e-
and s-exponents of QMC-tractability.

Furthermore, if holds with b = 0, i.e. 7Ny, does not grow by
increasing the dimension s, we speak of strong QMC-tractability. In

this case, the infimum of a is referred to as the e-exponent of strong
QMC-tractability.

(cf. [6, Definition 5])

In order to obtain some information on the worst-case error the next step
will be to simplify it. For this reason we consider a QMC-rule @),, s with an
arbitrary set of sample points P = {xq,...,x, 1} € [0,1)° . Exploiting the
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reproducing property of the reproducing kernel K55~ of Fas s~ and
inserting the identity from Lemma [.3] yields

1 n—1
]s<f) - Qn,s(f) = <f7 1>wa1,s,'y - ﬁ Z<f7 Kwal,s,ﬁ,’y(’; Xh)>wal,s,~/
h=0

1 n—1
= <f7 1>wal,s,'y - f7 Z Z Kwal,s,ﬁ,‘y(‘; Xh)>
wal, s,y

h=0

1 n—1
= <f7 1—-— Z Kwal,s,ﬂ,v('axh)>
n
h=0 wal, s,y

for any f € a5+, (cf. [6, p. 162]).

The main advantage of using the theory of reproducing kernel Hilbert
spaces lies in the fact that we can explicitely find a function which is hardest
to integrate in 51 5 5 (cf. [B, p. 28]). This is indicated in the next theorem.

Theorem 4.7. The worst-case error for integration in the Hilbert space
Hal,s, 3y With reproducing kernel Kya s using an arbitrary point set
P = {x0,..., X1} < [0,1)" is given by

1 n—1
G(Qn,s) =|1-- Z Kwal,s,ﬁ,w('yxh)
n
h=0 wal, s,y
(cf. [6, p. 162])
Proof. (Adapted from [B, p. 28])
We define ,
17
h(x) :=1-— - Z Kyal s,8~(X, Xp)
h=0

and for f e a5 let

Y

Rn,P(f) = ’Is(f) - Qn,s(f)| = ‘<f> h’>wal,8,’y

as we know from the previous paragraph.
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First, we consider the case | f|waysy < 1. An application of the inequality
of Cauchy and Schwarz yields

Rn,P(f) = l<fa h>wa1,s,‘y‘ < HfHWal,s,‘thHwal,s,'y < HhHwal,s,—y (20)

as an upper bound for the worst-case error.

For a general f € 4, 53~ We therefore get

|hHwa1,s,
T = Aty (21)

wal, s,y

ho () - [ Psao] _ Wl
TS fwars [ £l warsy | £l
where we have equality for f = h. So we can obtain the upper bound from
by choosing f = h in (21)). Since, of course, h/|h|wars~ 18 normed, it
is admissible for the supremum used to calculate the worst-case error and
hence

6(Qn,5) = ”huwal,sﬁ
]

Remark 4.8. Based on the result of Theorem we can follow the steps
given in [6, p. 162] to simplify further, using identities from Remark as
well as the reproducing property of Kyalsg.:

1 n—1 1 n—1
GQ(Qn,s) = 1-— E Z KW&LS,,@,’Y('?Xh)a 1-— E Z Kwal,s,677('axh)>
h=0 wal, s,y

h=0
1 n—1
=—-1+ ﬁ Z Kwal,s,ﬂ,‘y(xhvxi) (22)
h,i=0
1 n—1 s . .
=1t ST (14 omatal? ) (23)

From (23) we see that the worst-case error in J,) s 5 using sample points
Xg, - - -,X,_1 can be calculated with a computational cost of O(n%s) and, as
we will see later, this cost can even be reduced to O(ns) operations if we use
digital (t,m, s)-nets (cf. [0, p. 163 and Remark 3]).

By definition, the worst-case error in %, s 3~ is entirely determined by
the point set to which the QMC-rule is applied. Thus, it is legitimate to
use the following notation for the worst-case error of a QMC-algorithm with
sample points xg, ..., X, _1:

e(Qn,s) = en,s(X07 s 7Xn71)~
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This allows us to introduce €, 5, the root mean square of the worst-case error,
through

éi,s = f 672’L,S(X07 e aXn—l) dXO e an—l;
[0,1)
as given in [6, p. 163].

For this entity we are able to prove the following estimate:

Theorem 4.9. For 3 > 1 the root mean square of the worst-case error
in Hyal,s 8, a5 defined above, is bounded by

where p(B) is given by (see Lemma

qﬁ(q—l)'

) =~

(cf. [6, Theorem 1])

Proof. (Taken from [0, Theorem 1])

Using Equation from Remark we can rewrite € , as follows:

n—1
éi’S =-1 + — Z f Kar s 5.~ (Xn, X;) dxp, dx;
hz 0
n—1
=-1 + 5 Z J Kwal 18,8,y thxh) dxh
n—1
+ Z J Kyal .8~ (Xn, %) dxp, dx; |.
h,i=0+[0,1)%*
h#1i

The Walsh series of Kyais s, is uniformly convergent, as we have already
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seen in the proof of Lemma Thus, the first integral equals

Kal,s,6,4(Xn, Xp) dxj, = Z T(ﬁ;’Y,k)J wali (x)wali (x) dx
[0.1)® keNj [0,1)°

= Z r(ﬁ,'y,k)J walg(x) dx

keN; [0,1)*

> r(B..k)

keNg

due to Proposition [2.10}(i) and (ii). This, again, can be simplified through
Lemma [2.16k

S 0 S
k) =] (Z (8,7, k ) = [ [ +u().
keNg j=1 \k=0 j=1
We will now draw our attention to the latter integral, for which we get
f Kwal,s,ﬁ,'y (Xh7 Xi) dXh dXi = Z T(ﬁa v, k) J VValk (X)Walk (y) dx dy
[071)25 [071)25

keNj

as a result of Proposition and the uniform convergence of the Walsh
series of Kyals g,y again.

Consequently, by inserting these results into the original formula, we ob-
tain

n—1 s n—1
o= 14 g | ST +m(e) + 31
h=0 j=1 h,i=0
h+#1
=1+ % n| [(1+vpB)) +n(n— 1))
j=1
. (H(l +91(B)) — 1)
j=1

1 S
< exp (ﬂ(ﬁ) vl

where we used the inequality 1 + = < exp(z) for each factor in the last
step. O]
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There is an essential conclusion which can be drawn from this result.

Corollary 4.10. If Z;O:I v; < 90, then we have strong QMC-tractability
for multivariate integration in Ja 55~ with an e-exponent of at most 2.

(cf. [6l, Remark 2])

Proof. From Theorem [£.9 we know that

é?’L,S S eXp ( Z >

As ens is defined as the mean of efbs over all possible sample points we can

deduce that for all n € N there exists a point set {Xq,...,X,-1} € [0,1)° such

that
er (X0, ., Xpo1) < —exp < 2%> ,
(cf. [6, Remark 2]).

For an arbitrary € € (0, 1) let ng € N such that

ng < 2exp (,u(ﬁ) 2 fyj> €2 < 2ny.

Jj=1

Therefore we have

eiovs(xo,...,xno_l) < —exp ( Z%>
and hence

nmin(eu S) <ng < 2€Xp (M(ﬁ) Z 7]) 672
j=1

Since we assumed that 22021 v; < oo and as we know that p(3) > 0 and that
(7)jen is a sequence of non-negative numbers, we can estimate as follows

Nmin (€, 5) < 2exp (u(ﬁ) Z fyj) €2 < 2exp (u(ﬁ) 2 fyj) €2 =€ 2,
j=1

j=1

which eliminates the dependency on s. O]
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4.2 Error analysis for digital (¢, m, s)-nets over F,

In this section we investigate which impact the use of digital nets has on the
worst-case error and on (strong) tractability respectively. From the definition
of digital (¢,m, s)-nets over F, we know, that the n = ¢ sample points are
determined by the choice of generating matrices C1, ..., Cs € F'*™. We will
consider this fact by denoting the worst-case error by egm (Ch, ..., C;) if it
stems from a digital (¢, m, s)-net over I, with generating matrices C1, .. ., Cs.

At this point, we need to briefly recapitulate some definitions that were
made in the course of this thesis. First of all, ¢; was defined as an arbitrary
bijection from Z, onto F, with ¢;(0) = 0, where 0 denotes the zero-element
of the respective additive group. Additionally, we considered its extension
@ Lgn — F* such that for k € Zgm with g-adic expansion k = " | kig'™!

we have p(k) = (¢1(k1), .-, 01(km)) "
Moreover, we want to recall, that we identify Z,» with the least residue
system modulo ¢". Hence, it will not do any harm if we extend ¢ to non-

negative integers by setting ¢(k) = ¢(k mod ¢™), k € Ny.

Now, we can make the following definition:

Definition 4.11 (Dual net). Let Ci,...,Cs be m xm matrices over F,
s € N. Then, the dual net is defined by

D= {k=(ky,.... k) eNg: Cp(h) + -+ Cl (k) = 0}

Furthermore, we define
D* := D\{0}.

(cf. [I7, p. 412))

This setting allows us to even simplify the closed form of the worst-case
error which we had in Remark and reduce its computational cost from
O(n?s) to O(q™s) = O(ns), (cf. [6, p. 163 and Remark 3]).
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Theorem 4.12. Let P = {xq,...,Xgm_1} be a digital (t,m,s)-net over

F, with generating matrices Ci, ..., Cs. Furthermore we denote the jth
component of the point x, € P,0 < h < q"—1, by x for any 1l < j < s.
Then we have
q"—1 s

627”,3(017"'705) = Z T(B,’)’, = _1+_ 2 H 1+7]¢wa16 )70))

keD* h=0 j=1
where ¢war p is defined as (see Theorem

1(B) ifr =y,

¢wal,ﬁ<x7y) = M(/B) _ q(iofl)(lfﬁ) (M(ﬁ) + 1) Zf Tiy # Yig and

x; =y; for all 1 < iy,

with x; and y; denoting the ith digit in the q-adic expansion of x and y
respectively.

(cf. [T, p. 412))

Proof. For the first equality we adhere to the proof of [6, Theorem 2|. We
start off by inserting the corresponding values into the closed form of the
worst-case error which we had in the general case, i.e. Equation in

Remark (4.8

m_1

ezm,s(C’h ce ,CS> = -1+ q— Z Kwalsﬁﬂ,(xh,xz)
h,i=0

% Z_ Z (8,7, k) wali(x;, ) walk (x;)

q h,i=0 keNg
qm—1

Prop. m —1+ q_ Z Z ﬁ 7, Walk<Xh@Xz)

h,i=0 keNg

Rem. [2.24]

For a fixed 7, 0 <@ < ¢"—1, we notice that the mapping x — xOx; for x € P
is nothing but a permutation of the elements of P, as (P,®) is a group (see
Theorem . Thus, each summand with respect to ¢ in the above equation
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yields the same value. Therefore we have

qm—1
eom o(Ch,...,C5) = —1 + — Z Z (8,7, k) waly (x5) (24)
h=0 keNj
1!
= =1+ > r(B,7.k) — > wal(x).
keN T 1=

From Lemma we know that for k = (kq,..., k) the sum over h can be
reduced to

m_q .
qZ waly (xp,) = { q" if O (k) + -+ CJlp(ky) =0,

0 else.
h=0

Together with the fact that r(3,4,0) = 1 we arrive at

e (Cr...,C) = ) r(B,7.K),

keD*

which proves the first equality.

For the second part we enter the above proof at and exploit the fact
that wal,(0) = 1. This gives

ezm,s<017 L C) = 1 + Z Z (8,7, k) waly (xp,)wal, (0)
h=0 keNj
em. m .
o Z (1 Yibwar (2, 0)).
]

Similarly to Theorem we are interested in how the worst-case error
behaves in average when using digital nets over F, as sample points. This
means, since the points of a digital net are already determined by its gener-
ating matrices, that we will now consider the mean of the square worst-case
error over all possible choices of generating matrices, as the next definition
indicates.
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Definition 4.13. We denote the set of all possible choices of s m xm
generating matrices over [F, by

Cy:={(C1,...,Cy): C; e F"™ for 1 < j < s}

and we define A;m ; as the mean square worst-case error over Cy, i.e.
1 2
14(17‘)17'S . — W Z eqmys(01,...,cs>.

(cf. [6, pp. 165f.])

Lemma 4.14. Let p(B) be defined as in Lemma for some 3 > 1.
Then the following assertions hold true for Agm s:

(i)

g ==t T = (1= ) TT (14042

j=1

and

(i)

(cf. [6, Lemma 4])

Proof.
(i) (Taken from [0, Lemma 4]).

From Theorem we immediately get

1

Aqm73 = W Z Z 5»7,

Ch,...,.C)eCy keD*
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We transfer the condition for k = (ki,...,ks) to be in D* to the sum
over C,, giving

Aqm,s = # Z T(6777k) Z L.

keNg\{0} (Ch,...,Cs)eCqy
Cl(k1)++CJ o(ks)=0

Thus, the remaining task is to determine the number of all possible
choices of generating matrices (C, . . ., Cy) which satisfy Z;Zl CjT o(k;) =
0 for given (ki,...,ks) € N3\{0}. To do so, we need to distinguish be-
tween two cases.

Case 1: There exists an 1€ N§\{0}, such that k = ¢™1.

Due to the definition of ¢, this means that for each k;, 1 < j < s, we
have ¢(k;) = 0 and hence 3°_, CJ¢(k;) = 0 holds independently of
(Ch,...,C5). Therefore, all of the ¢™% s-tuples of generating matrices
fulfill this property.

Case 2: k = k* + ¢™], with 1 € N§j and k* = (k},..., k) € NJ\{0},
where 0 < £} < ¢™ foreach 1 < j <.

Inserting k; into the bijection ¢ yields ¢(k;) = @w(k}), 1 < j < s.

Therefore, we need to investigate how many (C,...,C;) € C, fulfill
21 Gl (k) = 0.

To this end, we denote by c;; the ith row vector of the matrix C; and
we identify each k7 with its g-adic expansion k¥ = k%, + Kiq+ - +
K5 mq™ ", where 1 <@ < mand 1 <j <s. Note that ¢, then is the
1th column vector of C'jT . Thus, the above condition can be rewritten
as

YD clipi(ss) = 0. (25)

j=1i=1

Since we assumed k* # 0, we can deduce that there exists an index
1 < jo < s such that £} # 0. Hence we can find iy, 1 < ig < m, such
that % . # 0 and therefore (k% , ) # 0.

Josto Josio
This in turn implies that for any choice of row vectors ¢y 1. .., €1m,Ca 1,
<+ 3 Cjo.io—15Cjo.io+1s- - -»Cs,m We can uniquely solve the condition given in
for ¢j, 4y, i.e. we have exactly ¢"™*~™ admissible elements in C, in
the second case.
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Summarizing the intermediate results from above and abbreviating
max{k},... k¥} as |[k*|, for k* = (kf,... k¥) e N} yields

Aqm,s = # Z T(ﬁ7’7vk) Z 1

keNg\{0} (C1,...,C5)eCqy
Cl o(k1)+-+CT o(ks)=0

=— > r(By.q™) g

1 o

mzs 2 Z (ﬁ ’Y,k*+qml) m2s—m
1ENg k*eNg\ {0}
[k*[oo<q™

= —1+ > r(8,7,qM +—Z D (B K+ ).

1eN 1eN3 k*eNg\ {0}
[k*floo <g™

We try to simplify these sums separately, starting with the first one.
By definition of r(f,,k), see Definition and Equation , we
have

Yor@Brdm = ] Z (8,75, 4"

1eNg j=1

0
= 1+ Z g Plogq(a™)]
j=1 =1

0

j=1 1;=1
Lemm:amg (1 +; l;i?) : (26)

By using this result we obtain for the second sum

leNg k*eNs\{O}

[k*[oo<q™
= 2 T(B777k> - Z T(ﬁ,’)’,qml)
keNj 1eNg

[Ty T (1+249). e
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So, all in all we have

Aqm,s =—1+ 2 T(ﬁ,ﬂ/,qml) + qim Z Z T(ﬂ,"}’,k* + qml)

1eN; 1eNg k*eNg\{0}
Iz <™
=—1+]] (1 + J%>
j=1
e (H (1+7u(B)) — (1 + %’%ﬁg)))
q j=1 J=1 q
1 1\ 1
=t o= (1 )T+,

which is exactly what we wanted to show.

(ii) First of all, we will show the inequality given in the second part of the
proof of [6, Lemma 4], that is

—-1+]] <1 + ’Yj%) < qim [ [ +3u08).
j=1 j=1
This can be seen as follows:

() = 2 TR

J=1 uc{l,...,s} i€u

u#JJ

/Zlqim D B R

uc{l,...,s} i€u

u#J

Together with part (i) we obtain

Agrs =1+ im (1 +71(8)) + (1 - im> S (1 +%-@)

q" 5 Q") 3 qm’
S qiml_[(l"‘%ﬂ(ﬂ))_l"'n (1“"7] 553))
j=1 j=1
< im (1 +1(8))
q"
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This lemma tells us, that the root mean square average converges at a rate
of O(q~™/?). However, we can still improve on the convergence speed under
certain conditions. In other words, we can prove the existence of generating
matrices for which the worst-case error converges at a speed of O(g=#m*9)
for any 6 > 0, (cf. [6, p. 167]).

In the proof of the following theorem we will use the so-called Jensen’s
inequality. It states that for a sequence of non-negative reals (ay),.y and for
any A € (0,1] we have that

(Z ak> <D ap, (29)

keN keN

see [0, p. 169], for instance.

Theorem 4.15. Let 5 > 1 and A € (1/3,1]. Then, there exists a digital
(t,m, s)-net over F, such that

m
A

2 _
6qm,s < CSy"/a/\ﬁq ’

where
S

Comns = 25 [ [ (1 + 2 u(BN) (30)

J=1

and p is defined as in Lemma[2.16,

(cf. [6, Theorem 3, item 1])

Proof. (Taken from [6, Theorem 3, item 1]).

Before we start with the proof we need to fiddle with some notational matters
first. Although it was not explicitely mentioned beforehand, by definition,
the worst-case error depends on 5 and . We will now indicate this by writ-
ing e;m <(3,7). Furthermore, for (77,73, . ..) we will simply write .
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From Theorem we know that for any digital net over F, we have

2o (B) = Y Bk 2 (Z T(ﬁ,%k)k>

keD* keD*

1
X

_ 3 H g los, )

(k1,....ks)eD* j=1

= (Z 7“(6&7“0)

= (egms(BAAY) Y (31)

It is to mention that the use of Jensen’s inequality was justifiable, as (3, v, k) =
Oand 1/ < A < 1.

N

Lemma implies — note that A,m s denotes the mean of the square
worst-case error with respect to all possible choices of generating matrices —
that there exists a digital (¢,m, s)-net over F, such that

qim H (L4~ u(BN)) .

7j=1

€2m73</8>\7 7)\> g

Since SA > 1, the last expression makes perfect sense (u(a) is only defined
for a > 1).
Finally, by putting together the results we have shown so far, we obtain

x _s

egm,s(ﬁ77) < (egm,s<ﬂ)‘77)\>)§ < W 1_[ (]- + ’Y;\/’L(ﬁ/\))
j=1

>l=
>3

= CsyaB 4

]

This allows us to derive certain conditions under which integration in
the Hilbert space J#1~ 1s (strongly) tractable, as will be shown in the
following two corollaries.
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Corollary 4.16. Under the assumption that for some X € (1/5,1]

0]
2% <
j=1

holds, there exists a digital (t,m,s)-net over F, such that

2 _m
Cqm s < Coyp 4 * <P,

where co 2 5 15 (formally) given by @) Hence, integration in Ay s 8.~
1s strongly QMC-tractable.

Furthermore, if

Ao mf{)\e (1/5,1] i }

then the e-exponent of strong QMC-tractability is at most 2.

(cf. [6, Theorem 3, item 2])

Proof. At first we will show that
Cooy, 2,8 < 0.

To this end, we follow the proof of [6 Theorem 3, item 2]. Assuming that
A € (1/p8,1] we obtain

(
C(X)7‘77A718 = 2

B

>l

ﬁ (1+u(50)

7j=1
— 2% exp (%;log (1+ ’yj‘u(ﬁk))) .

Since 3,7, 7} < oo and for all # > —1 it is true that log(1 + z) < =z, we

obtain
)\ o0
Conyng < 23 €Xp <M(f ) > V?) < .

j=1
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Trivially, we have 1 + ’yj’-\,u(ﬁ)\) > 1 for 7; > 0 (the latter is required by def-
inition of %1 5,5~) and therefore s, 5 < ¢y 425 for any s € N. Together
with Theorem this implies

>3
>3

2 — —_
Cgms S Csy a8 4 N S Coynpg @ » < DO,

which proves the first assertion.

For the second part let € € (0,1) be fixed. For this € choose m € N such
that

q" " < (comng e’Q)A < q™.
——

=M

Then we have )

3 —
eqm7s < Cm7‘77)"5 q

ME

<e

and hence

Numin(€,8) < ¢™ < gM = q (Comp e’Z)A.
Therefore we have found an upper bound for ny, (€, s) which is independent
of s and (at most) polynomially dependent on €, implying strong tractability.

Furthermore, if we denote the infimum of all \ satisfying 377, v} < o0
by Ao, it immediately follows that the e-exponent is 2)g, at most. ]

Remark 4.17. If ¢ is a prime number, then the e-exponent is always at least
2/B. This follows from Theorem 19 in Discrepancy theory and quasi-Monte
Carlo integration by J. Dick and F. Pillichshammer, which is to appear in A
panorama in discrepancy theory.

Corollary 4.18. Assuming

s .
j=1"V3

A := lim sup < o

1 Y
500 og s

there exists a digital (t,m, s)-net over F, and a constant cs which is solely
dependent on an arbitrary 6 > 0 such that

€2, | < cystONAT) =,

Thus, under this condition, integration in Hyasp~ 15 QMC-tractable
with an s-exponent of at most u(B)A and an e-exponent of at most 2.

(cf. [0, Theorem 3, item 3])
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Proof. Again, for the estimation of the worst-case error, we proceed as in the
Z] 173

proof of [0, Theorem 3]. Provided that A = limsup,_,, s

0 > 0 we can find an ss such that for all s > s5 we have

< oo, for any

Z v < (A+9)logs. (32)

Inserting A = 1 in in Theorem and using log(1 + z) < z for all
x> —1 yields

Comy1, 8 = 21_[(1 +v1(8))

2823 1 log s
nu(B) Z] 17
23 log s

9 gH(B)(A+)

NG A

for s sufficiently large. In other words, there exists a positive constant cs
such that

Comr 5 < CyshONAD

for all s € N. Considering this inequality in Theorem finishes the first
part of the proof.

For an arbitrary € € (0,1) we choose m € N such that

qul < C(SS;L(B)(A+5)€72 < qm

and continue as in the proof of Corollary to find that

Nmin (€, 8) < qeyst O AT =2
Therefore, if A < o0, integration in J&. 55, is QMC-tractable with an e-
exponent of at most two. Furthermore, since the exponents of tractability

were defined as infima and as 0 > 0 was chosen arbitrarily, the s-exponent is
at most u(5)A. O

What we have shown so far is, that there exists at least one digital
(t,m, s)-net which fulfills a rather favourable error estimation (cf. Theo-
rem . Up to this point, however, we do not have any idea how many
digital nets can meet a certain error barrier. To describe this problem in
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a more mathematical way we consider the set of all possible choices of s
generating matrices over F, (see Definition {4.13))

Cy={(C1,...,C): C; e F"™™ for 1 < j < s}

and the equiprobable measure v on C,, which is defined by

1

I/(Cl,...,cs)zm V(Cl,...,CS)ECq.

For ¢ > 1 and 1/ < A < 1 we define

>l=

Cyle, N) = {(C’l, o C5) €Cytoegm 5(Ch, ..., C5) < c

\/ 65777)‘a6q_&n} ?

i.e. all choices of s generating matrices for which the worst-case error worsens
at most by the factor ¢'/* compared to that in Theorem m Thus, we are
interested in how large C,(c, \) actually is with respect to v (cf. [6, p. 168]).

Theorem 4.19. Let ¢ > 1 and 1/ < XA < 1. Using the definitions from
the paragraph above we get

v(Cy(c,N)) >1—c 2

(cf. [6, Theorem 3, item 4])

Proof. (Adapted from [0, Theorem 3, item 4])

The proof of this theorem will be split into two parts:
1. We will define a set C,(c) < C,, for which v(C,(c)) > 1 — ¢ 2 holds.

2. Subsequently, we will show that C,(c) < C,(c, \).

ad 1. For the worst-case error in J%,1 s g~ With 8 > 1 and weights v; > 0, 1 <
J < s, using a digital net over F, with generating matrices C4,...,C;
we write e,m (5,7, (C1,...,C5)). Furthermore, we define

Cyle) := {(Cl, oo, C5) €Cytegm g (B/\,')/A, (Ch,y. .., CS))

< ch\/i ]_[ (+ 7 u(BN)? }

Jj=1
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Now we can estimate the mean square worst-case error over C,, i.e.
Aym s (cf. Definition [4.13), with parameters S\ and y* as follows:

1
Aq’”,s = 2 Z 627”75 (6/\7 7)\7 (Cla S 708))

A\

1
— Yo e (B (Cr,. )

From Lemma [4.14] we know that
2

m
q j=1

V)

Aqmvs < (1 + W?N(BA)) )

if we use the parameters S\ and +* instead of 8 and ~ respectively.
Exploiting this fact and using the identity

v (€C() = 1= v (Cole)

v ((fq(c)> >1—c2

ad 2. For any (C4,...,Cs) € C, the inequality given in in Theorem m
tells us that

finally yields

1

e(B,7, (C,...,C5)) < ex (BN, (Cy,...,Cy)).

Thus, if we assume (C}, ..., C) € Cy(c) for ¢ > 1, we have

s 1

2 _m 2 —
62(ﬁ777(017"'a s s crg oA +")/] A = C*Cs4,7,89

]:

by definition of C,(c) and hence (C4,...,C) € Cy(c, ).

m
A

—_

By combining the results of 1. and 2. we have shown that

v (Cyle,\) = v (éq(c)> >1-¢2
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To illustrate the significance of this result we for instance consider ¢ = 10.
As A > 1/8 we can say that for at least 99 % of all choices of s generating
matrices the worst-case error increases at most by a factor of 10V < 107,
(cf. [0, Remark 4]).

We want to close this section by giving both necessary and sufficient
conditions for (strong) QMC-tractability. Before we do so, however, we try
to obtain a lower bound for the worst-case error.

Theorem 4.20. The worst-case error in Hai s s~ for a QMC-algorithm
using the sample points Xq, ..., X,_1 1S bounded from below by

1 |
ens (Hantspy) = =1+ — [ | (1+min(y;, Du(B)).

J=1

(cf. [6, Theorem 4])

Proof. (Taken from [6], pp. 1701.]).

We begin by showing that Kyass~ = 0if 4, > 0 for all 1 < j < s. From
Equation in Remark we know that the reproducing kernel can be

written as
S

Kyt (% ¥) = [ [ (1 + %éwars(@?, y9)) |

j=1

for x = (zM, ... 2)) € [0,1)° and y = (yV,...,y®) € [0,1)° and where

u(B) if v =y,

¢wal,5(‘r7 y) = _ (io—1)(1-8) if Tiy # Yig and
w(B) — g (n(B) +1) s — v, for all i < i

(see Lemma [2.19)). The numbers x; and y; hereby stem from the g-adic ex-
pansions of z and y respectively.

Since § > 1 and ¢ > 2 we can estimate as follows:
B(g — B
Lemma 218 ¢° (¢ — 1) q
p(p) = >

> > 1.
¢ —q ¢’ —q




66 4.2 Error analysis for digital (¢,m, s)-nets over F,

As ¢' % <1 and iy > 1 we arrive at

() = gD (u(B) + 1) = u(B) (1 — ¢l DI=P) — glo=b=A)
-1 Qq(irl)(lfﬁ)

> —1.

Hence we have

I+ '7j¢wal,ﬁ =0

for v; < 1.

For simplification reasons we define 7;. = min(y;,1), 1 < j < s, and
7/ - (71’ te 77{?) ThU_S7 Kwal,s,ﬁfy’ = 0.

It is easy to see that

[t = 25 7B TR = 3 r(8.7 1070 = R sy

keNg keNg

for any f € Jya1,5,8~, since r(5,7, k) increases with respect to the entries of
~, as we know from Definition and Equation (4)). This in turn implies
that the closed unit ball of J%.1 53~ is contained in the closed unit ball of
Hal,s, 5, For the worst-case error we therefore have

ei,s(%val,s,ﬂfy’) < 6?2’L,S (%val,saﬁfﬂa

where e, ;(#a15,5+) denotes the worst-case error in the space a5 5.4, for
an arbitrary but fixed QMC-rule @, 5.
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For any point set {Xg,...,X,_1} € [0,1)" we obtain
) 1 &
ei’s<%val,s,6,‘y’) = -1+ m Z Kwal,s,ﬂ,'y’ (Xh7 Xi)
h,i=0
1 n—1
> -1+ 3 Z Kyal 5.8~ (Xn, Xp)
h=0
(3) 1S —
= -1+ e} Z Z (6,7, k) walk (x),) walk (xp)
h=0 keNg
n—1
Prop. 1
R 1 53 Y (B k) walk(0)
h=0 keN3
1
= —14+ = !
" > r(8.4.k)
keN§
1 S 0
o
Lemma [2.16] ]- d
I E HH (1+~u(B)) -
j=1

]

This already suffices to derive necessary conditions for tractability and
strong tractability of integration in a1 .-

Corollary 4.21.

(1) Multivariate integration in Hyasp~ is strongly QMC-tractable if
and only if 3,7 v; < 0.

(it) Multivariate integration in Hya s~ 15 QMC-tractable if and only
if imsup,_,; >3, 7;/log s < 0.

(cf. [6, Corollary 1])

Proof. The if-part has already been shown in Corollary for (i) and in
Corollary for (ii).
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So, we assume that multivariate integration in %, s 5. is strongly QMC-
tractable, i.e. nyn(€,s) < ce”® for any € € (0, 1) and some constants ¢, a > 0,
both independent of s. In any case, it follows from Theorem that

[15=, (1 +min(y;, 1)u(B))

14 €2 ’ (33)

Nomin (€, §) =
(cf. [6, p. 171]).

Now, we will proceed in a similar fashion as H. I. Sloan and H. WozZniakowski
did in [18, p. 715]. By definition of a5~ we know, that (7;),y is a se-
quence of positive and non-increasing real numbers. Thus, there either exists
a 7 such that v; = 79 > 0 for all j > 1 or the sequence converges to zero.
First, suppose the sequence (7j)j€N is uniformly bounded from below by, say,
7 > 0. Then (33) can be estimated further

(1 +min(yo, 1)p(B))°
1+ €2 '

nmin<€> S) =

Hence, ny,i, grows exponentially with s, which contradicts tractability. Thus,
we may restrict ourselves to the case where lim;_,, v; = 0. Additionally, for
contradiction we assume Zj’;l v; = co. In this case we can rewrite as
follows:

exp (235, log (1 + min(y;, ()

- >
nmm(67 S) 1+ 62
If we now manage to show that Z;’;l log (1 + min(v;, 1)u(8)) = o we can
deduce that nmi(€, s) tends towards infinity as s — oo, which is clearly a

contradiction to strong tractability.

But this is indeed the case as can be found in the proof of [8, Theorem 4],

for instance:

0 0

Z'yj <oo<=>210g(1+’yj) <

j=1 j=1
The implication from left to right follows immediately from the fact that
log(1+;) < ;. On the other hand, we know that (%)jeN is a non-increasing
sequence, which means there exists a constant C' > 0 with v; < C for all
j € N. Therefore we can find another constant d = d(C) > 0 such that
dx < log(1 + z) for any z € [0, C] and consequently

0 100
2.7 ;ZZ gl +7) <=,
=1 j=1
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which completes the proof of the first part.

It is left to show is that QMC-tractability in % s 3~ implies

lim sup =—— < 0.
500 log s
Following [18, p. 715] again, we already know that lim; ,, v; = 0 is a neces-
sary condition for tractability. Rewriting the numerator of the right handside
in gives
2 . : s log(+min(y;,1)u(8))
H (1 + min(vj, 1)#(5)) — SZj:1logs (1+m1n(7j,1)u(5)) N > log(1+ log'vs] Lu(s

j=1

Under the assumption that limsup,_,,, >;;_, 7;/log(s) = o and using the
same argument as in the proof of the first part we can now conclude that
Nmin (€, 8) grows faster than any power of s, contradicting QMC-tractability.

0

Finally, we investigate what happens to the worst-case error whenever 3
approaches 1.

Corollary 4.22. Let @), be an arbitrary QMC-algorithm and let
e(Qn s, Hals,5,~) denote the worst-case error for integration in Ayl s, p.-
Then we have

5ILI?+ 6(@71,57 %val,s,ﬂ,’}’) = 0.

(cf. [6, Theorem 5])

Proof. (Taken from [0, Theorem 5]).

From Theorem [4.20] we know that

S

BQ(Qn,sa %val@ﬁ,’y) = -1+ l 1_[ (1 + min(’Y]W 1):“(6))

n i=1
and together with
B
: o Plg—1)
o wlh) = Jim Zos g =7

we obtain the desired result. O]
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5 Construction algorithms for digital (¢, m, s)-
nets over I,

Although we have the existence of digital (¢, m, s)-nets over F, with a rather
favourable behavior with respect to the worst-case error at hand, which may,
in some cases, even exploit (strong) tractability, we still have not yet solved
the problem of finding such. To this end we will intoduce algorithms for
constructing generating matrices using formal Laurent series over F, and in-
vestigate the performance of the resulting digital nets concerning integration
n %val,s,ﬁ,*y‘

As it was also done in [4] p. 1898], we begin by defining the field of formal
Laurent series over the finite field F, i.e.

0
F,((z71)) := {Z tix™': weZand t; e R, for all | > w} ,
l=w

and denote the set of all polynomials over F, by F,[z]. The first types of
digital nets we are drawing our attention to are so-called polynomial lattice
point sets, which were first introduced by H. Niederreiter in [12] (see also

Section 4.4 in [14]).

5.1 Polynomial lattice point sets

Definition 5.1 (Polynomial lattice rule). Let p € F,[x] with degp =
m € N. Additionally, we consider qi,...,qs € F,[z] and the Laurent
series expansions

q;(x) _ S uW oyt e 1

with w; < 1, for 1 < j < s. Furthermore, we set

CE??’? = ug‘-]i-)r € FQ’

l:w]-

where 1 <i<m, 0 <r <m — 1 and define

W D
, () :
C; = (cl(]T)) = u2 (34)

-----

r=0,...,m—1

e R
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for all 1 < 57 < s. The matrices C,...,C, are now used to construct
a digital (¢,m,s)-net over F, as described in Definition forming a
so-called polynomial lattice point set. We denote this set by Sy(q), where
q=1(q1,...,9s), and call a QMC-rule employing S,(q) as sample points
a polynomial lattice rule.

(cf. J4, Definition 2.3, Remark 2.4])

Remark 5.2. Since ugj ) is the entry with the lowest index in C}, it suffices
to merely consider such polynomials q; with deg(q;) < m—1,1 < j < s,

(cf. [5, Remark 10.12]).

In the case where ¢ is a prime number, the construction principle of
polynomial lattice point sets can be held considerably simpler.

Theorem 5.3. Let g be a prime, p € F,[z] with deg(p) = m € N and
q=(qu,...,q9s) € Fi[z]. We define the map vy,: Fy((z™")) — [0,1) by

Um (i tlxl> = i th*l.
l=w l=max(1,w)

As, in the prime case, Fy corresponds to Z,, we may choose p1 = id and
hence, with every 0 < h < ¢™ with g-adic expansion h = hy + hog+ -+ - +
hmg™ ! we can associate the polynomial

h(z) = hy + hox + -+ + hy, 2™t € Fy[x].

Then, the polynomial lattice point set S,(q) is given by the points

0<h<qgm.

(cf. [4, Remark 2.7])
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Proof. In accordance to Definition we expand

for all 1 < j < s. For the evaluation of v,, applied to the following fraction
we adhere to the proof of [B, Theorem 10.5]. For an arbitrary 0 < h < ¢™
with g-adic expansion h = ZZ:OI hi1q" we get

—b(:;)(C];)(x) = Z ul(j)x_l (kz_;] hk+1$k> = Z 2 k+1$

l:w]- = wy k=0

We substitute r := [ — k and set u = 0 for 1 < ¢ < wy, if existent. Since
v, only considers the truncated polynomlal where 1 < r < m, we obtain

m m—1
Upn, (M) = U 2 x " Z uv("]-'zlh’l+1 2 qir Z ur+lhl+1
p(l’) r=1 1=0 r=1

It needs to be added, that the sum over [ is evaluated in I,.

Let ¢;x = (ul, ... ul) ) denote the kth row of the generating matrix

C;. Thus, using the fact that C; is symmetric, we have
m—1
k
yj( )<h) = Cj,k(hh ey Z uk+lhl+1
1=0

As the jth component of the point x; is given by >", yj(k)(h)q_k we are
finished. [

For some choices of the polynomials involved we can even make assertions
concerning the distribution of the point set S,(q) itself, as it will be shown in
the next theorem. To do so, however, we require the result of the following
lemma which was given by R. Lidl and H. Niederreiter in [11].

Lemma 5.4. Let q;,p € F,[z] with degp = m € N and ged(q;,p) = 1.
Then, the matriz C; € Fy™™ obtained by the methods from Deﬁmtion
15 reqular.
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Proof. See [11l, Theorem 6.75]. O

Theorem 5.5. Let p € F [z] with deg(p) = m € N. Furthermore, let

qu,---,qs € Fy[z] such that ged(q;,p) =1 for all1 < j < s. By azgj) we
denote the jth coordinate of the point x, € Sp(q), 0 < h < ¢™. Then, for

every 1 < j < s the point set {x(()j), . ,xfﬂ,)_l} is a (0,m,1)-net over F,.

(cf. 4, Remark 2.5])

Proof. Let 1 < j < s be a fixed integer and let

a a+1
E = lq—m’ qm ) s
where 0 < a < ¢™, be an arbitrary one-dimensional elementary interval
in base ¢ of order m. We need to show that there exists exactly one h €

{0,...,¢™ — 1} such that xglj) € E. If we consider the g-adic expansion of a,
ie.

a=a;+aq+ -+ ang"",

we immediately notice that

. . a a
er<=>xhastheq—adlcexpansmnx:—m+~--+—;+@

q q qm-i-l

with suitable coefficients 0 < &, < ¢, K > m. Thus, to find a unique h =
hi + -+ hpg™ ! with the desired property we need to solve the system of
linear equations

¢1(h1) e1(am)
Cj : = :
¢1(hm) e1(ar)
Lemma secures the existence of exactly one solution and togehter with
the fact that ¢; is bijective the result follows. m

Apart from deciding on which polynomials to choose for the construction
of a polynomial lattice point set, the only tedious task left is to determine
the coefficients of the Laurent series expansion. This, however, is facilitated
by the identities given in the following theorem.
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Theorem 5.6. Let m e N and p,q € Fy[z], where
p(.f(]) =™ + plxm_l + o+ Pm—1T t P

and
q() =™+ G T+ G

Then, the coefficients w; € F,, | = 1 from the Laurent series expansion

Mz ™!
o) 2"

can be retrieved for | < m from the linear system of equations

1 0 o 0 Uy m
pl T . T . E u2 q2

: -0
Pm_1 - P1 1 U, dm

and from the recursion
0= 1w +w-1p1 + w2p2 + - + U—mPm
forl>m.

(cf. [4, Proposition 2.6])

Proof. First of all, we rewrite the occuring polynomials into a closed sum,
m—1

giving p(z) = 32 Pz’ and q(z) = X7 gmj2’, where py := 1, and
consider the equation
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For simplicity reasons we set p; = 0 for i ¢ {0,...m}. Comparing the coeffi-
cients of the various powers of x, as suggested in the proof of [4, Proposition
2.6], then leads to

0
Im—j = Zulpm—j_l for0<j<m-—1
=1

0
— q = Zulpk,l for 1 <k <m. (35)
=1

Thus, for any k£ € {1,...,m} we have (after eliminating the cases where
-1 =0)

k
qx = Z U Pk—1,
=1

which, most certainly, corresponds to the linear system of equations given in
the claim of this theorem. Similarly, we see from that

k
0= 2 WPk—1
l=k—m
for k£ > m, which proves the second assertion. O

Before we proceed further, we introduce some notation. In the case where
q is a prime number similar definitions can be found in [4, pp. 1900 and
1904f.].

For 1 < k < ¢™ with g-adic expansion k = K1 + Kog + -+ - + kg™ ' we

define the polynomial €(z) = ¢1(k1) + @1(k2)z + -+ + @1(Kp)2™ ! € Fylz].
Furthermore, we introduce the mapping tr,,: Nyg — Z,» with

o0
try, (Z ’%+1qi> ‘= Ky + Kaq 4+ + kg™
i=0

where 0 < k; < ¢ for all 7+ € N. Similarly to the above case, we associate
trm(k), k = 2,7, Ki+1¢", with the polynomial

tr, (8) = 1(k1) + p1(k2)T + - + @1 (k) 2™ € F ]

For k € Nj we define tr,, (k) and tr,,(¥) componentwise.
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Moreover, for p = (p1,...,p,) and q = (qi,...,q,), both in F;[z], we set

p-q:= ijqj € Fylz].

j=1
Finally, we define the set of all non-zero polynomials over IF, with degree
less than m by

Gym = {8 F[z]\{0} : deg(t) < m}

and its s-dimensional analogon by the s-fold cartesian product

S
S .
Gy = [Gam-
J=1

We now draw our attention to the square worst-case error again. In
Theorem we have shown that for any s-tuple of generating matrices
(Cy,...,Cs) over F, we can compute the worst-case error for the correspond-
ing digital net by evaluating the sum

qu(Cl,...,C') = Z r(8,7,k),

keD\{0}

where the dual net is given by

Dz{(kl,..., ) e N3 - ZCT }

It hardly comes as a surprise that we obtam a very similar result for polyno-
mial lattice point sets.

Lemma 5.7. Let p € F,[x] with deg(p) = me N and q = (q1,...,q5) €
F:[z]. Then, for a QMC-rule employing the polynomial lattice point set
S,(q), the worst-case error for integration in Ay s~ can be calculated

egm,s(sp(q)): Z T’(ﬁ,’y,k).

keDyf
Here, the dual net D, 4 is defined as
Dyq:=1keNj: tr,,(¢) - q=0 (mod p)}

and Dy, 1= D, 4\{0}, where for two polynomials v,s € Fy[x] we interpret
t=0 (mod s) as s dwvides v in F,[z].

(cf. [4, Lemma 4.1] and [5 p. 300])
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Proof. For all 1 < j < s let

Z U Fy( x(il)»

l=w;

and let C1, ..., Cs € F;™™ be the generating matrices obtained by . Due
to Theorem [4.12] it suffices to show that

ZC’T ;) =0<—=tr,(£)-g=0 (modp)

for every k = (ky,. .., ks) € Nj\{0}, as indicated in the proof of [4, Lemma 4.1].

To this end, we follow the proof of [5, Lemma 10.6]. So, first of all, we
intend to find a formula for the coefficient of =", r € N, in (tr,,(¥) - q)/p.
For every 1 < j < s we consider the polynomial tr,,(&)(z) = ¢1(kj1) +
o1(kj2)x+ -+ o1(Kjm)a™ ! € F[x], where k;; denotes the ith g-adic digit
of k;. We have

tr, (85)q; S : ()
TJ] = Z p1(Kji1)2’ Z u'w
=0 l=w;

m—1

= Z ¥1 ’f]z+1 2 Ul

=0 l=w;
m—1
o
Y1 /f]erl Z u .
i=0 r=w;—1

T

Therefore, the coefficient of =", r € N, in the above fraction is given by

m—
Z 1(Kji+1) r+z

and hence the coefficient of 2" in (tr,,(€) - q)/p is

s

m—
35 il
j=1 i=0

By taking a closer look on the condition for (ki, ..., ks) being an element of
D we find that

s

Clo(k) +--+Cloky) =0 =Vl <r<m: ZZ 1(Kjit1)u TH =0.
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This, however, is equivalent to the coefficients of ™" in (tr,,(€;)q;)/p being
zero for all 1 < r < m, i.e.

1
Etrm(é) q=g+ L (36)

for some g € Fy[z] and some L = > | frz=* e F((z~')). Note that this
sum starts at k = m + 1. Rearranging this equation yields

We observe that the highest power of z in L is —(m + 1) at most and p has
degree m, whereas on the left handside we have an element of F,[x], leaving
L = 0 as the only possibility, which in turn means that p divides tr,,(€) - q.
Thus, we can say that holds if and only if tr,,(¢) - g =0 (mod p). O

We now consider the case where p is irreducible over F,. By definition
we have that k = (ki,....,k;) € Dy 4 iff

tr, (€) - q = tr,, (€1)q1 + - - + tr(8s)gs =0 (mod p).

Since p is irreducible, it follows that ged(qy, p) = 1in Fy[z] whenever deg(q;) <
deg(p) and q; # 0. This, however, is no restriction due to Remark . Hence,

one can always find q} € F,[z] such that qiq; = 1 (mod p). Thus, whenever

we choose p irreducible over F [z] and we want to make assertions involv-

ing the dual net D, 4 or — due to Lemma — the worst-case error, we can

restrict ourselves to the case where q; = 1, (cf. [5, Remark 10.10]).

5.1.1 The component-by-component construction

In Section we have shown several existence results for digital (¢, m, s)-
nets satisfying a certain error bound or exploiting (strong) tractability under
certain conditions (see, for instance, Theorem and Corollaries and
4.16)).

Lemma together with Remark and the above discussion already
provide enough information to state an executable routine to find a digital
net for which the worst-case error behaves rather favourably. The algorithm
works as follows:
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Algorithm 5.8 (Component-by-component construction). Choose an ir-
reducible polynomial p € F [z] with deg(p) = m € N and let all parame-
ters necessary to define the weighted Hilbert space %155, be given.

1. g1 :=1.

2. For d = 2,...,s find q4 € G,,, which minimizes e*(S,(q, ..., qa))
over G .

3. Return q = (q1,...,9s).
(cf. J4, Algorithm 4.3])

It is to mention that this algorithm terminates after finitely many steps
as |Gym| = ¢™ — 1, (cf. [, p. 1905]).

We can now estimate the worst-case error for integration in a3,
using a polynomial lattice rule obtained by the above algorithm at every
intermediate step.

Theorem 5.9. Let p be an irreducible polynomial over F, with deg(p) =
m € N and assume that q* := (qf,...,q%) € G;,, are the polynomials
generated by the component-by-component (CBC) construction. Then,
for all d € {1,...,s} and for all 1/5 < X\ < 1 the following inequality
holds:

% % 1 d %
€ a(Sp(af, -, 03) < ——— [ [ (L+ u(BA})
(g™ —1)x j=1

where p is defined as in Lemma [2.16]

(cf. [4, Theorem 4.4])

Proof. We recall that in it has already been shown that r(8,v,k)* =
r(BA Y k).

We begin with the proof by looking at the congruence
trm(é)qik = trm(é) =0 (HlOd p)a (37>
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where £ is the associated polynomial to k € N. It is clear that every solution
of has to be a multiple of ¢, i.e. k = l¢g™, | € N, as deg(p) = m >
deg(tr,,(€)). Hence, for d = 1 we obtain

0
Lemmam
21 (Sp(1) >, (B k) =D (B 1)

keD* =1

Let 1/ < A < 1. Applying Jensen’s inequality (see (29)) and using the
identity given in the proof of Lemma m, Equation yields

A

RE

eqm1(Sp(1) < <

:<l

(q/g%v?u(ﬁﬂ)

(" -1 (1+ AL(BA)%)X :

r(ﬁa 1, lqm>)\>

1

A

M8

1

(B, 77, lqm))

1
X

H

Nl
>
y\H

Thus, the assertion is true for d = 1.

For the rest of the proof we adhere to the proof of [4, Theorem 4.4]. Let
q; = (q7,...,q;) denote the vector consisting of the first & polynomials
obtained from Algorithm [5.8 and assume that for some d € {1,...,s— 1} we
have

d 1
o @) < o T uen)’t @)

1/8 < A < 1. We now consider S,(q, q4+1) for some arbitrary qgq+1 € Ggm,
where

(qza qd+1) = (qT7 s qfl? qd+1) :
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Using Lemma again we find that

€om a1 (Sp(q, as1)) =
= Z 7’(57 (777d+1)7k>

keD*
pi(a7:9q41)

- Z (8,7, k) 7(B, Va1, kas1)

(k,kat1)eNgTH\{0}
trm (€,8441)- (% ,4q41)=0 (mod p)

= > r(8,7.k)

kel{\ (0}
trm (8)-95=0 (mod p)

v

kq+1=0
0
+ Z T(577d+17kd+1) 2 T(B777k>
kqy1=1 keNg
trm (€)-q5=—trm (tg41)94+1  (mod p)
kd:;ﬁﬂ
Lemma [5.7]
=R 1(Sp(al) + 0(dasa), (39)

where we define 6(qq.1) as the double-sum (i.e. the case where kqyq # 0) in
the above equation. Since we choose g, as a minimizer of 2. 4, (S,(q, -))
over Gy, and as in only 6 is dependent on g%, , it follows that 6*(q%, ;) <
0*(qas1) for all qay1 € Gy and all X € (1/3,1]. Consequently,

A

e<q:z+1><< Y qum) . (40)

m
q dd+1€Gq,m

After applying Jensen’s inequality twice we get

0
9)\<qd+1) < Z T(ﬁA?’Yc)l\+17kd+l> Z T(6A77A7k>'
kgy1=1 keNg

trm (8)- g% =—trm (E411)da4+1  (mod p)

(41)
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Averaging 6*(-) over G, yields

! 2 Q/\(qu)

gr—1 9a+1€Gq,m
@ 1 =
< m _ 1 Z ( Z T(ﬁA770)l\+17kd+l) Z T(ﬁ)‘77)\7k)
q qd+1€Gqm \ kgp1=1 keNd
q"™ kg1 trm (€)-q5=0 (mod p)
o0
+ Z T(ﬁAuvc)l\Jrhderl) Z 7’(5)\,'7)\71())
kqi1=1 keNd
q™ka41 trm () q¥=—trm(q11)qq+1  (mod p)
= 21 + 22. (42)

We notice that each summand in ¥; is independent of q,4; and hence we
obtain

e}
Yy = Z r(BX 731, kar1) Z r(BA, 7", k)
kqy1=1 keNd
q" ka1 try (£)-5=0 (mod p)
@ 18BN
B qﬁ—/\de Z r(BAANK). (43)

keNd
trm (8)-q%¥=0 (mod p)

For the simplification of ¥y we observe that q4.1 # 0 and tr,,(;.1) # 0
as ¢™ 1 kg1 in Xy, Moreover, p is an irreducible polynomial neither dividing
tr,, (B441) nOT qgr1. Thus, p does not divide tr,, (€441)q4+1. Therefore we have

> > r(BA, 7, k)

qd+1€Gq,'m kENg
trm (8)-q)=—trm (8a11)da1  (mod p)
A
= Z r(ﬁ)‘v v, k)7
keNd

trm (8)-q5#0  (mod p)

which leads to the following estimation of ¥j:
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1 0

S = o D r(BAda kan) > (B2 k)
q kd+1:1 kENg
q™Mka+1 trm (£)-q5#£0  (mod p)
1
< ( (B k) - > r(ﬁkrﬂk)>
q keNd keNd
trym (£)-5=0 (mod p)
o0
X( Z r(ﬁ)‘772+17kd+1)>
kqy1=1
Lemma ,U/ 6/\ 7d+1 d A
[T+ BN - > r(BA k) |-
J=1 keNg

trm (£)-95=0 (mod p)
(44)

As an intermediary summary we state what we have shown so far:

. ) 1 »
0(aqc1) < (qm—l Z 9/\(C|d+1)>

qd+1€Gq,'m
(42) 1
< (21 -+ 22))‘
@3), (@@ )y M)y
.g. ,Lt(ﬁ ))\/yd-‘rl Z r(ﬁA,'}’/\,k) + ,Lt(ﬁ )’Yd-‘rl
e keNg ¢ —1
0
trm (€)-95=0 (mod p)
d 3
X (H (L+p(BA) — > r(BA A, k)))
J=1 keNd
trm (€)-q5=0 (mod p)
1
px (BA)va+ qg" —1
= m—I > T(ﬁ)\,VA’k)(W - 1)
trm (€)-q5=0 (mod p)
d 3
+] (@ + m(BNY) )
j=1
X (B d 1
SRLICIONEN § ITEURENNALS
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as SA > 1.

Using this inequality on and exploiting the hypothesis in finally
gives

2 ai1 (Sp(ap) 2 e, < L (a5)) + 0(a%,)

d 1
< 1t [T+ u(BN)) (1 + px (6A)7d+1>
j=1
d . .
< % H 1 + U 6)‘)% )X (1 + N(ﬁ)‘>%/l\+1))\ )

(g™ i

where, in the last step, we used Jensen’s inequality on the last factor. This

completes the proof for the d + 1-case and the result follows by induction for
all de {1,...,s}. ]

The above theorem allows us to prove various statements concerning the
worst-case error for polynomial lattice point sets gained from the CBC con-
struction for which we had only existence results in the general case, i.e. in
Section or, more precisely, in Theorem and Corollaries and
418

Corollary 5.10. Letp € F [z] be an irreducible polynomial with deg(p) =
m € N. Furthermore, let q* = (1,q53,...,q%) € G; ,, be the s-dimensional
vector of polynomials obtained from the component-by-component con-
struction, i.e. Algorithm[5.8 Then, the following assertions are true:

i) For all 6 € (0, 21] we have
(i) 2

5+s

eqm.s(Sp(a%)) < csprys (@) 277,

s 8_s
. B_s 57126 B 2
Co By, i= 22 (1 + ) ( )) .
L1 J B—25

(i) Under the assumption that

where

_1

o0
B—26
2
7j=1
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it follows that

and hence

(iii) Suppose

A = limsup j=1 7
S§—00 Og S
Then, there exists a constant c,, which is only dependent on n > 0,
such that e
22 n _m
eqms(Sp(q%)) < cys 7 g2
for alln > 0.

(cf. [4, Corollary 4.5])

Proof. As in the proof of [4, Corollary 4.5] we set \ := ﬁ to find that

1ot o1
B B—-20 B-pB+1
——
=)

Thus, we may apply Theorem with this value for A, giving

L

eqns(Sp(0%) < (¢ — )7 [ [ (L + 1) u(BN) >

and hence the first assertion follows.

The proofs of the remaining items are identical to those of Corollaries
and for this special setting of parameters A and ¢ and, naturally,
one has to refer to item (i) instead of Theorem [4.15] O
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From items (ii) and (iii) we learn that, by employing the CBC method,
we may exploit strong tractability and tractability of integration in a1 s 5.+
respectively.

5.1.2 A Korobov type construction

The second construction method for polynomial lattice point sets which is
going to be presented in this thesis is that of a Korobov type. The common
feature inherent in such algorithms is that one picks an element of a specific
domain (e.g. integers) and forms a vector consisting of successive powers of
this element (cf. [B, p. 306]).

For the construction of polynomial lattice point sets we consider an irre-
ducible polynomial p € F,[x] of degree m € N as well as another polynomial
q € Gy and define the lattice point q = (q1,...,qs) by setting

q;=¢"" (mod p),

where deg(q;) < m for all 1 < j < s. Most of the time, however, we will
adhere to the more convenient notation

v,(q) = (1,9,9°,...,9°) (mod p),
(cf. [4, p. 1908]).

Algorithm 5.11 (Korobov type construction). Let all parameters nec-
essary to define the weighted Hilbert space .55~ be given and let
s = 2. Then:

1. Choose an irreducible polynomial p € F,[z] with deg(p) = m e N.
2. Find q € G, which minimizes e , (Sy(vs(q))) over Ggm.

(cf. [4, Algorithm 4.6])

Remark 5.12. Similarly to [5, Remarks 10.27 and 10.33] we notice that, in
comparison to Algorithm [5.8] we need to try |Gy,,| = ¢" — 1 polynomials for
coming up with a point set of the above kind, while this is done in each of
the s — 1 iteration steps occuring in the CBC construction.

We may estimate the worst-case error for integration in a5, using
point sets obtained by the above algorithm as follows:
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Theorem 5.13. Let s > 2 and let p € F,[x] be irreducible with deg(p) =
m € N. For any q obtained by Algorithm we have

S

(1 +%m8),

j=1

(S (@) <

where () is defined in Lemma [2.16|

(cf. 4, Theorem 4.7])

Proof. (Taken from [4, Theorem 4.7])

We begin by defining M(p) as the average of the square worst-case error
using a Korobov type polynomial lattice, i.e.

M) = —— 30 e (Sy(wa(a).

qm -1 9€Gq,m
As g is a minimizer of e} ,(S,(vs(+))) over Gy, it immediately follows that

Cqm (Sp(vs(8))) < Mi(p). (45)

Thus, all that remains to be done is to estimate M, (p) appropriately. To this
end, we simplify as follows

Lemma 5.7
Ms(p) = 5 77
qEqukEDpv ()

1

= > r(8,7,k)
q 4€Gam keN3\{0}
trm (8)vs(q)=0 (mod p)

1

S Y CEA R YR )

keN§\{0} q9€Gq,m
trm (8)-vs(q)=0 (mod p)

leaving us with the task of determining (or estimating) the number of solu-
tions of the congruence

tr, (1) + tr,,(B2)g + -+t (B)g* ' =0 (mod p) (47)
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for each (ki,...,ks) € N§\{0}.

First of all, we consider the case where k = ¢l with 1 € Nj\{0}. Since
tr,,(€) = 0,any g€ G, is a solution to (| . Secondly, if k; is not a multiple
of ¢™ and the remaining k;, 2 < j < s, are, we cannot find any solution at all.
In any other case, i.e. k; = k:]*—i—l ¢" with 0 < kf < ¢™, (k3,...,k¥) # 0, and
[; =0forall je{2... ,s}, there are at most s — 1 q € G, satisfying (47).
To facilitate notation we recall that, for n € N, the maximum value of all
of its coordinates is denoted by |nl|s, where d stands for any finite dimension.

Considering this discussion in yields

1 m s—1
M(p) < —— DBy, D -
q 1eN3\{0} 4Gy q
( Z Z Z T(6a717k1> 7’(5,%,]{; +qml]))
E1=0 (15,...,1)eNST1 (k¥,... . k¥)eN; 1\ {0} Jj=2

I(kS 5. EE) |0 <g™

The identities

S rByam) = (1 . anﬁﬁ))

1eNg J=1
and
s—1 s—1
> DBk ") = [+ yu8) - [ ] (1 + %‘%@)
1leN; ™! k*eNg ™!\ {0} =t g=1 !

Ik*[loo<q™

have already occurred in Lemma in and . Applying this to the
respective terms and Lemma to the sum over k; allows us to simplify

further

Mp) < TT (14950 ) = 14 228 (1 ()

X (g(l +751(5)) —]@ (1 + %%)) :

Once again, we need to cite Lemma [4.14] but now Equation , in which
one can see that

1 (1 + %’%) 1< qimn(l +7,1(8))-

7j=1
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Thus, we finally arrive at

1~ s—1 £
M(p) < s [T +yu(B) + pr— (L4+7p(B) | | +v1(8))
j=1 j=2
s S
S [ @+ m8)).
Inserting this into the inequality given in (45)) completes the proof. O

We immediately notice that, compared to worst-case error for point sets
gained from the CBC construction method, the dimension s appears as a
stand-alone factor in the above theorem. Thus, we are only able to present
a reduced version of Corollary [5.10]

Corollary 5.14. Letp be an irreducible polynomial over F, with deg(p) =
m e N and let q € G, be the polynomial obtained from Algorithm |5.11].

Then, the following assertions are true:

i) For all § € (0,%2] we have
2

. B 5, mnB
eqm.s(Sp(vs(8))) < Copas® * (¢™) 2,

where

85 : 5—125 6 g_é
CS,B,"/,& = 22 H ]‘+7‘] IU’ /8_26 .

(ii) Suppose

Then, there exists a constant c,, which solely dependens on n > 0,
such that

eqm s(Sp(vs(7))) < ¢y q

Hence, the worst-case error depends at most polynomially on the
dimension s.

1+p(8)(A+n) m
2 2

(cf. 4, Corollary 4.8])
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Proof. (Taken from [4, Corollary 4.8])

(i) We consider the dependency of the worst-case error on the parameters
$ and v by writing e;m (5,7, Sp(vs(q))). Furthermore, we define A :=
1/(B — 29). Note that 1/5 < A < 1. Using Lemma and applying
Jensen’s inequality gives

egn (8.7 Sp(vs@) < Y, (8K

ES
kEDp,vsm)

>

N

>, r(BAANK)

*
kE’DPv’Us(CI)

1

= (. (AP S wa@) )
Theorem now implies that there exists a q. € Gy, such that

egm,s (ﬁ)H ’7)\7 S!J (’Us(q*))) <

Since q is a minimizer of the square worst-case error, we obtain

g (8.7, 8, (0,@) < (2 (BA, S (0,(@) )

55 s
25\ 2 755 B
:(q_m) g(lﬂf “(6—25»

(ii) The proof of this result follows exactly the same pattern as that of
Corollary and will therefore be omitted.

1
2N

N1

—6

O

Finally, we compare the results for the two construction methods which
were introduced in this section. Although the Korobov type construction
takes less time to come up with a polynomial lattice (see Remark , we
learn from Corollary that, in this case, the worst-case error differs by
a positive power of s, compared to that obtained by the CBC construction.
More importantly, however, this factor deprives us of the possibility to exploit
strong tractability if Zjozl 7;»‘ < . So, in principle, we may say that Algo-
rithm yields better results than Algorithm (cf. [5 Remark 10.33]
and [4, p. 1911}).
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5.2 The construction method by Niederreiter

This method, too, uses formal Laurent series for the determination of the
generating matrices. In this approach, however, one uses different irreducible
polynomials as denominators instead of concentrating on the variation of the
numerator, compared to the construction of polynomial lattice point sets.
The following construction scheme was introduced by H. Niederreiter in [14]
and can also be found in [5] p. 264].

Let py,...,ps € Fy[z] be monic, irreducible and mutually distinct with
deg(p;) = e; € Nfor all 1 < j < s. Furthermore, for 1 < j < s and all
1 < i < m we consider

—— = aY(ik,r)x"
p](x)l r=0

for all integers 0 < k < e; and set

cfjr) = a9 (Q + 1,k,r) e T,

where 0 < r < m —1 and the integers () and 0 < k < e; are chosen such that
1—1= er +k

(

holds. Subsequently, we collect the coefficients cljr) to form the generating

matrices

1<j<s.

Before we are able to proceed further we will have to work ourselves
through a series of lemmas, which aim at showing another bound for the
worst-case error. As a reward, this will vastly facilitate the estimation of the
worst-case error employing digital nets of the above kind.

Lemma 5.15. Let P be a digital (t,m,s)-net over F, whose generating
matrices Cq, ..., Cy are non-singular. Furthermore, we define

[d] :={1,...,d}, deN,

and

Dym = {ke Ng: |k < ¢™ and ZCJ-TQO(kj) = 0}

j=1
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and set D}, := Dym\{0}.

Then we have

S X G| (| TT 42

ug(s] \keD¥, jeu Jels]\u
1 : p(B)
< — [ [ +2vu8) - <1+7J’T/3 +1
q j=1 j=1 q
(cf. [3, p. 286]))

Proof. (Adapted from [3, pp. 285f.]).

Let u = {uq,...,u.} be a proper subset of [s], i.e. e < s, and consider
Fuysoo ke, €{0,...,¢™ — 1} fixed. Moreover, let {ji,...,js_u} = [s]\u.

Thus, the condition k € Dym is equivalent to

Ciplks) +--+C olky,_,) =D,

Js— Js—|ul

where b = —C, ¢(ky,) — - — C, ¢(ky,,) € F". For an appropriate vector
d =d(kj, ..., kj,_,._,) we may write

sz_m Qp(k]’sfm) =d.

The latter equation admits of ¢™*~ "I~V right handsides, for each of which
there exists exactly one solution, since C;__  is regular by assumption. Thus,
for fixed k,,,...,ky , the maximum number of k € Dym is bounded by
¢~ =1 and hence

2 [k < eI (qZ r(ﬁ,%k)) —1

kep;l‘m JEU Jj€Eu k=0

Lemma 2.16]
< eI+ yu(B)) - 1.

JEu

Note that we needed to substract 1, as we have allowed k to be the zero
vector in the above discussion. Using this inequality and the fact that § > 1
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we obtain
(s
S8 lreaw )| 142
uc(s] \ (k1,..., )eD "n JEU Jels]\u
A=) B w(B)
<§: [Ta+yue)-1) [ ] vosF
< jeu jelsha 4
u 1(B) 1(5)
:2 ||1H(1+%M(5))H%’W—Z [ w1
uels jeu s wels] jelshu
<LZH1+ H H1+ JELCOR
S T ’Y]/ﬁ 7]/’1’ 7 4P
uc[s] jeu Jj=1
- H 1+ 2y;(8 <1+7j%@> + 1.
: o q

]

The proof of the next lemma will be omitted, as its result is more of a
technical nature and does hardly provide any valuable information concerning
digital nets.

Lemma 5.16. Let b > 1 be a real number and let k, to € N. Then the
following inequality holds

0 —k
t+k—=1\, ., 4 (to+tk—1 1
S () 055)

Proof. See [7, Lemma 6]. O

This result comes in handy for the proof of the following lemma.

Lemma 5.17. Let u = {uy,...,u.} be a non-empty subset of [s] and let
P be a digital (t,m,s)-net over F, with generating matrices C, ..., Cs.
Furthermore, assume that the projection of P onto the coordinates in u
constitutes a digital (t,, m, |u|)-net, for some t, < m. Then

_ ul . [u|—1
q—1 2(m —ty +2)

JeEu
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where B(u) is defined by

q"—1

B(u) := Z Hr(ﬁ,yj,kj).

kuqseeoskue =0 Jjeu
Cily p(kuy )+ +Cy, p(kue )=0

(cf. [3, p. 287])

Proof. Without loss of generality we choose u = [e] and obtain

qa1+1_1 qa5+1_1

m—1 e
Bw= > gty Y ) L (49
ay,...,ae=0 j=1 f1=qa1 kezqaeJ

Cf @(k1)+++CJ ¢(ke)=0

as we have already done earlier in the proof of Lemma [2.16|or as can be seen
similarly in [3, p. 286].

The remaining part considers the proof of [2, Lemma 7], where a different
result is shown, but the main ideas relate, nevertheless. Next, we aim at
reformulating the condition 25:1 CJp(k;) = 0. To this end, let c;; be the
ith row vector of the generating matrix Cj, 1 < i < mand 1 < j < s.
Additionally, we denote the lth g-adic digit of k; by k;;. Thus, the above-
mentioned condition is equivalent to

0=ciipi(k1o)+ - +C1a01(F1a1-1)+ Cra 4191 (F1,a1)

+

Co1P1(K2,0)+ +C2.0,01(K2,a0—1) + €200 1191 (K2,05)

+

+

Ce,l(pl(Re,O) + - +Ce,aegpl(ﬁe,ae—1)+Ce,ae+1§01(’ie,ae)- (49)

Since, by assumption, the projection of the digital net P onto the coordinates
in u is a digital (t,,m, |u|)-net, it follows from Lemma (3.5 that the vectors

C1,17 e 7C1,a1+17 C2’1, Ce 7Ce,1, Ce 7C€,ae+1
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are linearly independent, provided that

€

Diai+1) <m—ty,

i=1

which implies that, with this restraint put on a4, ..., a., a non-zero solution
ki,..., k. of cannot exist. Consequently, we only need to investigate the
case where

e
Zai>m—tu—e+1.
=1

For this reason, let

. mx(al+--+a
A= <C1,1>--'7C1,a17C2,17"-7Ce,17"-7ce,ae) EFq (a1 6),
fm,al ----- Keyae * _(cl,a1+1901(“1,a1) + CQ,a2+1901(’€27a2) +o
m
+oo o+ Cogor101(Fea,)) eF;

k= (@1('11,0), o p1(Bra—1)s e1(k20)s - - -

T a1++a
..,@1(R670),...,@1(567%,1)) EFql+ + .
Now we can rewrite in the following way:

Ak = f,

Kl,a1s--Re,ae "

(50)

From Lemma we know that for the rank of the matrix A, we denote it
by rank(A), we have

rank(A) =a; + -+ a., ifa+- - +a <m-—t,

and
rank(A) = m —t,

otherwise.

Thus, if we denote the space of solutions of the linear system of equations
Ak = 0 by L, it follows that

dim(L) =0, ifa;+---+a.<m—t,

and
dim(L) <a;+ -+ +a.—m+t,
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in the other case. Hence,

ai+--+ae . —
# {k € ]Fq + . Ak - fﬁl,alw"v"%,ae

€ —_
Lj=14 Mt olge

}g{ 1 ifZ;Zlczjém—tu,
q

This finally allows us to determine an upper bound for B(u), based on Equa-
tion (48):

qa1+1_1 qae+1_1

m—1 e
_ —B(a1+-+a
Rl | D YRR W
ai,...,ae=0 7j=1 k1=q*1 ke=qe
C{ p(k1)+++CJ p(ke)=0
m—1 e q—1

_ PRl I A D 1
j=1

a,...,ae=0 HLal,...,K/e,ae:l keIFZl+'<.+ae
Ak:fﬁl,al ,,,,, Ke,ae

m—1 e q—1
< DI A | 7D Y
a1,...,ae:O ]=1 Kl,aly"'yne,aezl
a1+-+ae=m—ty—e+1
y Loaf Dy a <m —ty,
qu:l a—m+tte Zlezl a; >m —ty
m—1 e
_ e —Bla1+++ac
= (¢—1) > " aIK
ay,...,ae=0 Jj=1
m—ty—e+1<ai+--+ae<m—ty
m—1 e
e 1-8)(a1++aec)—m+ty
Ha-1 ) " i N E?
ai,...,ae=0 Jj=1

. <(q 1) f[%-) (21 + 22>. (51)

We can rewrite Y as follows:

m—1
Yy =g Z g~ B—D(ar++ac)

&1,--.,(le=0
a1+-+ae>m—ty

e(m—1) m—1
_ tu—m —1(B—1
ST IR !
l=m—ty+1 at,...,ae=0
a1+-+ae=l

Since the number of non-negative integer solutions (as, ..., a.) to the equa-
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tiona1+---+ae=lisgivenby<

tu—m c l+e—1\ -1
Yo < ¢ Z c_1 |14

l=m—ty+1
LemmaBI8 4 0 (8-1)(m—tar1) (T —ta T € P rt-1\""°
s 4 e—1 !
_ —B(m—tu+1)+(B—1)e+1 ( f—1 —e (m—1,+e
P en (81 ) ( b )
—B(m— 9% _ - (m—t,+e
ST A Al ( e—1 )

and since for e > 2 we have (note that the inequality below is trivially fulfilled
for e = 1)

(m—tu+e>_m—tu+2 m—t,+3 m—t,+e

. < —tu 26—17
e—1 1 2 e—1 (m + )

we finally arrive at
Yy < g Plm—tuti=2e) (q,B—l _ 1)—6 (m —ta + 2)6—1 ' (52)

Now we turn to the estimation of ¥; as given in (1)), i.e.

m—1

El _ Z qfﬁ(a1+---+ae).

a,...,ae=0
m—ty—e+l1<ai+-+ae<m—ty

In order to determine an upper bound for this expression, we need to distin-
guish between two cases, beginning with that where m—t, > e—1. Hence, by
employing the same quantitative arguments concerning non-negative integer
solutions to a; + - - - + a. = [ as we have used above, we get

m—ty m—1
> = Z g Z 1

l=m—ty—e+1 at,...,ae=0

a1+-+ae=l
0
l +e— 1 —Bl
<
l=m—ty—e+1

Lemm<a q—ﬁ(m—tu—e+1) m — tu qﬁ
= e—1 qﬁ —1

< q—ﬂ(m—tu—Qe-i-l) (q,B—l o 1>_e <m ;iul"i_ 6)
—B(m—ty—2e+1) (

< q ¢t -1) " (m -ty +2),
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where the last inequality has already been shown in the estimation of .

If m—t, < e—1 we can do the following, based on some facts previously
used within this proof:

_ [+e—1
21 < Zqﬂl(e—l )

=0

Lemma [5.16] B e q° ¢
B z
= (6—1) (qﬂ—l)

(¢° = 1)° + gP Ve

(¢7 = 1)
Llyed’) 53
(¢"'=1)
It is rather obvious that
l+eq? < (m—t,+2)°" (54)

holds for e = 2. Now, suppose the above holds for some 2 < e < s. Then we
obtain

I+(e+D)g?<(m—ty+2)° " +¢7°
<(m—t,+2) " +1
<2(m—t,+2)"
< (m—ty+2)°

and therefore holds for all 2 < e < s. Together with the fact that
e—1>=>m—t, implies e < —m + t, — 1 + 2e, it follows from that

5, < q,g(mftu72e+1) (qﬁfl _ 1)76 (m — 1ty + 2)671, (55)

as we have also obtained for e — 1 < m — t,. For e = 1 this result can be
easily derived from the definition of ;.

Inserting and into finally gives
B < ((a= 1T ) (21 +52)
j=1
< <(q —1)° H%) <2q76(m7tu+172e) (q[’)*l _ 1)*6 (m — ty + 2)6—1)
j=1

and since e = |u| the result follows. O
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We are now in a position to find an upper bound for the worst-case
error for digital nets with regular generating matrices in terms of the quality
parameters of their projections, which were previously denoted by t,.

Lemma 5.18. Let P be a digital (t,m,s)-net over F, generated by the
regular matrices C, . ..,Cs € Fj™™. Under the assumption that for each
non-empty u < {1,...,s} the projection of P on the coordinates in u
constitutes a (ty, m,|u|)-net for some integer 0 < t, < m, the worst-case
error for integration in Hya s~ 15 bounded by

¢2. (P) < qﬁim L+ > [ m + 2u(8)y)

Q;éug{lw"vs} jeu

(cf. [3, Lemma 4])

Proof. The most important steps of this proof can also be found in the proof
of [3, Lemma 4].

Once again, we use Theorem to find that
egm,s(P) = Z T(/8377k)

k=(k1,....ks )ENS\ {0}
T (k) +-+CT p(ks)=0

and we notice that, if k is a multiple of ¢, i.e. there exists an 1 € N5\{0}
such that k = ¢™1, this always constitutes a solution to

Cl (k) + -+ Clo(ks) = 0,

as p(k;) = 0 for all 1 < j < s. On the other hand, if we have k = k* + ¢,
where k* € N§\{0} with all its entries bounded by ¢™ — 1 and 1 € N, then

p(k) = o(k*).

We recall that in Lemma [5.15| we have already defined

Dy = {(kl, oo ks) € NO\{0}: |k < ¢™ and Z Clo(ky) = 0}

j=1
and simplify in accordance to the above discussion:

eams(P) = D, By d™)+ Y, D (B k+g") =5+ 5, (56)

1eN5\{0} keD;“m 1eN§
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From (26) we get that

qm’

Sy = _ <1+%@) ~ 1. (57)

<.

The simplification and estimation of ¥ involves a little more effort. First of
all, we fix an arbitrary j € [s] and consider the jth component of 1 in the
innermost sum:

Dir(B.vg ki + q™) = (8,70 k) 2 r(B, ki + 7, q™)

=0

a0
(3, Vi, k Z —PBllogg (kj+q™1)]
Since, by definition of Dy, we have that k; < ¢" we obtain

S (B by + 00 B (8,7, k) + v-%.
=0

Inserting this identity into the definition of s yields

Yo = Z ﬁ (Zr(ﬁ,vj,kj%—qml))

keD*m j=1 \i=0

- H( F(Borso K +%/~L(B))_

keD*m Jj=1

Now, we can rewrite the above as follows:

Sp= ) Z(]_[ (8,7 k )> H%‘%

keD%, uc[s] \jeu jelshu

- 3 00+ 33 ([Trem) (T4
jelsI\u

keD;“m keD* uG[s] \Jjeu
- Z 7"(/8,’7, >+ Z Z HT(/87V]7 j) H ’Y]T,B
keD;"m us(s] keD;‘m JEu JE[s\u q

(58)
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We may, at this point, use Lemma to determine an upper bound for the
second sum in (58)):

ol 20 T1r3 k) I %%

ug(s] \keD}, jeu je[s]\u
G 1
< (1 +2y;1(8)) — 5
=1

|
5|~
A~ S
—_
+
g
o
=
=
R
\f/
L

1 ¢ -1
<\t Z[ A [T (m+2uB)yy) | - =1 (59)
#uc|s JEu

In the following we draw our attention to the first sum in , ie.

q"—1
Z r(ﬁa’)’ak) = Z r(ﬁaW/lakl)"'r(ﬂafY&ks)a
keD;"m ki,...,ks=0, |k|oo7#0

Cf @(k1)++CJ ¢(ks)=0

where k = (k1, ..., k;). Since r(8,7;,0) = 1 for any 1 < j < s and ¢(0) = 0,
we may rearrange this sum in the following way, according to for which
indices 1 < j < s we have k; = 0:

Y ok = Y D [ (83,7, k).

keD¥n g#uc[s] Kuy seeoskue =1 jeu
u={ui,. e} O @(kuy )+ +Col, (ke )=0

For an arbitrary, non-empty subset u = {uy,...,u.} of [s] we define B(u) as
in Lemma and exploit the result stated therein to find that

2, 1= 2, Bl

kqu,,L @;&uc
o [u] o [u|]—1
qg—1 2(m — ty +2)
< Z <q51 _ 1) qﬁ m—ty+1— 2|u| HV]
F#uc|s] Jjeu
Since we have ﬁ( )

qg—1 —59"(¢—1 _
e =4 =" u(B)
q 1 9" —q

and
2(m — ty + )M < (m -ty + 2)M < (m 4+ 2)1,
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it follows that

DBk < D] q Flm=tut 120D TT (" u(B) (m + 2)7y;)

keD;“m J#uC|s JEu

Ty qﬁtuH (¢ (m +2)u(B)y;) . (60)

Q;&uc j€u

As a summary, we obtain

2. P 2 omaw,

q
€3).E9. (69 1
<

Y qﬁt“]_[ (@”*(m +2)p(8);)

Q;ﬁuc jeu

1 -1
e “gguqqa P T 2000

Jjeu

= Tﬁ 1+ > q T @ e+ 2uB)y) |,

@;&uc jeu
which is exactly what we wanted to show. [

Finally, we can reap the benefits of the hard work we have had proving
the preceding lemmas, as the task of providing an upper bound for the worst-
case error for digital nets constructed by Niederreiter’s method is a perfectly
easy one now.

Theorem 5.19. Let P be a digital (t,m,s)-net over F, constructed by
Niederreiter’s method as introduced in the beginning of this section by
using the first s polynomials p1, . .., ps from a list of monic and irreducible
polynomials over F, ordered by their degree in a non-decreasing manner.
Then, the worst-case error for integration in s 5~ using P as sample
points 1s bounded by

ST+ @ (log, G-+ ) (m + 2u(B),)

J=1

Q
Q

Moreover, if we have
0
2 (jlog7)? ;< 0,

7=1
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then

eom (P) < 500"

for any & > 0, where c545~ 15 a positive constant which is independent
of m and s.

(cf. [3, Lemma 5])

Proof. First of all, we have to make sure that all the generating matrices
involved are regular. According to [3 p. 287] this can be achieved by a slight
modification of the generating matrices, which, however, has neither an effect
on the quality parameter of the digital net itself, nor on those of its projec-
tions.

In what follows, we consider the main steps of the proof of [3, Lemma 5.
From [19, p. 7] we learn that for any non-empty u < [s] we have

by = Z (deg(p;) — 1),

where p; denotes the jth monic irreducible polynomial used in the construc-
tion scheme. The only thing left to do is to determine an upper bound for
the degree of p;, 1 < j < s. To this end, we mention that, by assumption,
these polynomials are the first s monic and irreducible polynomials listed ac-
cording to non-decreasing degree and cite [19, Lemma 2|, where it is shown
that

deg(p;) <log, j + log,log,(j + q) + 2

for all 1 < 7 <s. All in all this implies

" <] (ailog,(j +q)) -

JEUu
We use this bound on Lemma (.18 and obtain

el (P) <1+ )] (q”“ (jlog, (i + )" (m + 2)u(6)w>
J#u[s] jeu

_ ﬁ <1 4 2P (j log, (j + q))ﬁ (m + 2)#(5)%’) )

j=1

which proves the first assertion.
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For the second part we proceed as it was done in [I0, Lemma 3]. To this
end we define

3 1= ¢ u(B) (jlog,(j + ¢))” v

for all integers j > 1 as well as

o0
Z%

j=k+1

for all £ > 0. For any such k& we obtain the following inequality:

log ( : (I+ (m+ 2)%))

< > log (1 + (m +2)7;)

j=1
k 0
< Dllog (140 + (m+2)3) + Y log(1+ (m+2)7;)
j=1 Jj=k+1
k ~ a0
2
=~ Y log ((1 f o) <1 ; M)) + 3 dog(1+ (m+2)7))
— 1+o .
j=1 Jj=k+1
= klog (1 + o} 2 ( M)—k i log (1 + (m + 2)7;)
k s 1+o;! Pt !

k 0
gklog(l—i—ak_l)+(m+2)0k27j+(m+2) Z Y

j=1 j=k+1
< klog (14 0,") + (m + 2)okog + (m + 2)oy,
= klog (14 0 ") + (m+ 2)ox(00 + 1).

As

0
Z jlogj v < 0

by assumption, it follows that for any § > 0 and some sufficiently large ks
we have

oks(0p + 1) < dloggq.

Consequently, we obtain from the first claim of this theorem in combination
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with the above discussion that

1 £ -
Ggm’s(lp) < qm_ﬁ (1 + (m + 2)’}/]‘)
j=1

1 VK
< P 1+ ak;) *exp ((m + 2)og, (00 + 1))
ks m(6—
<@ (1+01)%g (6—B)

and the result follows by setting

Cogpmy =" (1+ ‘71?51)]%

]

Here we easily see the important property that, under certain conditions
on the sequence of weights (%)jeN, the error bound does not depend on s.
Hence, it follows that strong tractability of integration in J%, s 3~ may be
exploited.

5.3 The construction method by Sobol’

Here, the generating matrices are constructed in a very similar fashion, com-
pared to the method proposed by Niederreiter (see Section . Hence,
it rather does not come as a surprise that the error estimation for digital
nets constructed by Sobol’s method is similar to the result we had in The-
orem [5.19] The construction principle can be seen in the paragraphs below
or, alternatively, in [5, Section 8.1.3], for instance.

This method only considers the case ¢ = 2. We set p;(z) = = and choose
s—1 primitive polynomialsﬂ over [F5 and order them according to their degree
in an increasing manner, say

deg(pa) < deg(ps) < ... < deg(ps).

Furthermore, we define e; = deg(p;) and choose polynomials y; ; x(x), where
1<j<s,1<i<mand0 <k <e;. The only restriction we need to put on
these polynomials is that for every 1 < j < s the sets {y; jx(z): 0 <k <e¢;}
are linearly independent over [y, with the arithmetics taken mod p;(x).

L A primitive polynomial over a finite field F is a monic irreducible polynomial whose
roots are generators of the multiplicative group F\{0}, (cf. [0, p. 639]).
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Then, analogously to the construction method by Niederreiter, we con-
sider the formal Laurent series expansion

o]

Yijk(T) G) (s —r—1
=t =y aV (i, k,r)x ,
pj(x)’ ,;)

where the possible values of 7, 7 and k are the same as above. The entries of
the jth generating matrice are now defined as follows:

o) = aD(Q +1,k,7),
where 1 < ¢ <m, 0 <r <m — 1 and where the integers () and 0 < k < ¢,

satisfy
1—1= QGJ‘ + k.

For any digital (¢,m, s)-net constructed by the above scheme we obtain the
following result:

Theorem 5.20. Let P be a digital (t,m,s)-net over Fy constructed
by Sobol’s method.  Then, the worst-case error for integration in
. walspy employing the point set P satisfies

Fo,p1
1 £ . . .
ens(P) < 3oz | | (25"“ (j1ogy(j + 1) log, log, (j + 3))” (m + 2)#(6)%) 7
j=1

where ¢ is a constant independent of all parameters.

Furthermore, if
[ee}
> (jlog jloglog j)’ v, < o0,
j=1

then the worst-case error can be bounded by
€ym s (P) < 5,727
for any 6 > 0, where the constant c5p~ is independent of s.

(cf. [3, Lemma 5])
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Proof. We closely follow the proof of Theorem [5.19] so, as a matter of fact,
the proof of [3, Lemma 5]. First, we refer to [3, p. 287] to find that the
generating matrices can be made regular without altering important param-
eters of the digital net or its projection and hence Lemma[5.18|can be applied.

For the determination of the quality paramteters t,, & # u < [s], we cite
[T9, p. 835], which, again, states that

ty = Z (deg(p;) —1).

We recall that here, p; denotes the jth element in a previously chosen set of
s primitive polynomials which were sorted by degree in an increasing order.
According to [19, p. 836] we have

deg(p;) < log, j + log,log,(j + 1) + log, log, log,(j + 3) + ¢,

where ¢ is a constant indepent of j and s. All in all this yields (note that
here, ¢ = 2 by definition)

2t < [ ] (297 jlog,(j + 1) log, log, (j + 3))
Jeu
and after using this inequality on Lemma the first part of this theorem

immediately follows.

For the second part we proceed in a similar fashion as in the proof of [10],
Lemma 3] and define a new sequence of weights

Fj 1= 277 (jlogy(j + 1) logy logy (7 + 3))” (),

j € N. Due to the assumption
[ee}
> (jlog jloglog j)”~; < oo

Jj=1

we have that
a0
Z v < 0.
j=1

Hence, it makes sense to define

0
O = Z :Yj'

j=k+1



Construction algorithms for digital (¢,m, s)-nets over F, 109

Once again, for a fixed § > 0 we choose ks such that
O'ké(O'O + 1) < 510g2

Following the respective steps in the proof of Theorem [5.19 we get
> k
H (I+%(m+1) < (1+ ak_él) *exp ((m + 2)og, (00 + 1))
j=1

and finish the proof by observing that

o0
egms H 14+ 7;(m+ 1))
Jj=
< 2% (1 + oy ) gmo-h),

]

Again, we close this section by briefly commenting on the last two con-
struction methods, i.e. Niederreiter’s and Sobol’s approach. We immediately
notice that the constants in the respective error estimations may increase
vastly as 0 approaches zero. Nevertheless, from these error bounds we see
that the methods may exploit strong tractability if applicable, since we have
managed to bound the worst-case error independently of the dimension s.

Moreover, if we compare the results we have shown for the CBC con-
struction (see Corollary [5.10)) to those which we have had for Niederreiter’s
method and Sobol’s method (see Theorems|[5.19]and [5.20)), we notice that for
the latter two we had to impose stronger conditions on the sequence (7;)jen
in order to have the possibility to achieve strong tractability than for the
CBC construction method.
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6 Concluding remarks

After having laid the necessary groundwork, that is, in particular, to es-
tablish that the space of generalized Walsh series %, 5 3~ is a reproducing
kernel Hilbert space, we used this fact to find an explicit formula for the
worst-case error, which is computable at a cost of O (n?s) operations (see
Remark and this effort can be even reduced to O(ns) operations when
employing digital nets as sample points (see Theorem .

Subsequently, we used averaging techniques to guarantee the existence of
a digital (¢, m, s)-net such that the worst-case error is bounded by

_m
eqm7s < 08777)‘76q 2)\7

where ¢, 4 5 3 denotes a constant depending on the quantities given in its in-
dex and where X € (1/3,1] (see Theorem [4.15)), from which we were able to
deduce that there exists a digitial (¢, m, s)-net such that (strong) tractability
can be achieved, whenever the sequence of weights ~ fulfills certain conditions
(see Corollaries [4.16 and |4.18)). Moreover, we even managed to show that
these conditions (with A = 1) are also necessary for integration in .15 5~

to be (strongly) QMC-tractable (see Corollary |4.21)).

These results, however, left us partly unsatisfied, as none of their proofs
was of a constructive nature. To this end we included a fifth section, where
four construction algorithms for digital (¢, m, s)-nets were presented and their
performance, with respect to their error behavior, was investigated. These
algorithms included:

1. The component-by-component (CBC) construction (see Algorithm|5.8)),
2. a Korobov type construction (see Algorithm [5.11),

3. the construction method by Niederreiter (see the beginning of Sec-
tion [5.2) and

4. the construction method by Sobol* (see the beginning of Section .

As it was mentioned before in Remark [5.12] the Korobove type construc-
tion is approximately s times faster than the CBC construction. The worst-
case error, however, satisfies an error bound which is, roughly speaking, /s
times smaller for the latter (see Theorems and [5.13). This also lead to
the fact that, again, under certain conditions on -, we may achieve strong
tractability in case of the CBC construction, whereas with the Korobov type
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construction the error bound still depends polynomially on s (see Corollar-

ies and .

Finally, after having taken a huge effort to find an appropriate bound for
the worst-case error for point sets constructed by the Niederreiter method
and the Sobol° method respectively, we were again able to find conditions
we have to put on the weights v such that strong tractability can be made
use of (see Theorems and , which are, however, still stronger than
those we have to impose on the weights to obtain a similar result for the
CBC construction method.
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B List of abbreviations

CBC component-by-component

cf. confer

e.g. exempli gratia, for example

f./ft. and the following page/
and the following pages

ie. id est, that is

iff if and only if

p./Pp- page/pages

prop. proposition

QMC quasi-Monte Carlo

rem. remark

thm. theorem

w.l.o.g without loss of generality



118 List of figures
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D List of globally used symbols

Numbers, vectors and matrices

As a general guideline we mention that numbers and matrices are printed
in regular letters (e.g. x stands for some number, C' for some matrix,. . . ),
while vectors are printed in bold letters (e.g. x). Moreover, for (vectors of)
polynomials (bold) fraktur letters are used (e.g. p,p,&,...).

r positive integer

D prime number

q prime power, q := p"

S positive integer, usually denotes the dimension

153 real number, g > 1

i imaginary unit,i? = —1

0,0 neutral element of addition (the corresponding space
should be clear from the context)

v positive weight

vy v = (71,72, - - -) sequence of non-increasing positive weights

~A Y = (7,73, - - .), where X is real

)y Kronecker delta, i.e. §;; € {0,1} and d;; = 1 iff i = j

where ¢, j are positive integers.
r(8,7, k) see Equation (4)), where k is a positive integer
(8,7, k) see Definition [2.22] where k a vector of positive integers
B) see Lemma [2.16
k), f(k)  kth (or kth) Walsh-Fourier coefficient of a Walsh series
f e Hapy (O f € Hasp~), where k is a non-negative
integer (or k is a vector of non-negative integers),

see Definition m (or Definition [2.22)
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Sets and set-related operations

X arbitrary set

X s-fold cartesian product of a set X

| X|, #X  cardinality of a set X

A(X) Lebesgue measure of a set X

[0%) empty set

R real numbers

C complex numbers

N non-negative integers

NO Nu {O}

[d] the set {1,2,...,d},de N

Z integers

Ly, residue class ring modulo b, b € N; usually identified
with the least residue system modulo b, i.e. {0,1,...,b— 1}

F, F, finite field (with ¢ elements, where ¢ is a prime power)

[rm set of all m xm matrices over F, m e N

Flx] field of polynomials over F

F((z™1)) field of formal Laurent series over F, see beginning of
Section

Gym set of non-zero polynomials over F, with degree less than
me N

D, D* dual net (or dual net without zero), see Definition

Dyq, Dy,  polynomial related version of dual net (dual net without
Z€ero) see Lemma

Sp(q) polynomial lattice point set, see Definition

H Hilbert space (general case)

Hoal By one-dimensional Hilbert space of generalized Walsh series,

see Corollary

Hoal,s, B,y s-dimensional analogon of J%,1 5, s € N, see
Definition

Ly(X) Hilbert space of square-integrable functions defined on a
set X

64 ® 5  tensor product of two Hilbert spaces 74 and 7745
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Special operations, maps, functions and operators

Z complex conjugate of z € C

|| absolute value of z € C

|z floor function of x € R

P max{ky, ..., kq} for k = (ki,...,k;) e N&, de N

a, CT transpose of a vector a or of a matrix C

deg(p) degree of a polynomial p

vs(q) see paragraph before Algorithm

try, truncation operator, m € N; see paragraph after Theorem

a-b Euklidean product of two vectors a and b

pP-q Z;‘:l quj7 where p= (pb cee 7p8)7 q= (qb R qs> € F;

®, 6 binary, digitwise operation, see Definition

©1 arbitrary bijection from Z, to F, with ¢;(0) =0

© extension of @1, ¢: Zgn — (F7")7, see Lemma ;
sometimes also its extension ¢: Ny — (IF;”)T, see paragraph
before Definition

P isomorphism between the additive groups F, and Zj,
sometimes also its extension, see Figure 2

i the map v o ¢, sometimes also concatenation of the
respective extensions i o ¢, see Figure 2

exp(z) exponential function e*, z € C

log, log, natural logarithm (or logarithm to base b, b > 1)

waly, waly  kth (or kth) generalized Walsh function over F,,
see Definition

K reproducing kernel of a Hilbert space 7 (general case),
see Definition

Kyal 8.4 reproducing kernel of %1 5, see Theorem

Kal 5,8+ reproducing kernel of %, s 3,~, see Theorem

<'> >
<'7 '>Wal,'y

|- llwai

inner product on a Hilbert space ¢ (general case)

inner product on J%, 3., see paragraph before Lemma
inner product on J%, s .~, see Definition
norm (general case); usually induced norm | - | :=
induced norm on S5

<" >

|- lwat,s~ induced norm on %1 5 5.+

Qns(f) quasi-Monte Carlo-rule for a function f, see the beginning
of Section

I(f) integral operator, see the beginning of Section

€n.ss €(Qns) worst-case error, see Definition might take different
arguments, depending on what is intended to be emphasized

Nmin (€, 8) information complexity, see Definition

O(f(z)) big O of f(x) in the sense of Landau notation, i.e.

g(x) = O(f(x)) iff f is an asymptotical upper bound
for g (here for x — o0)
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