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Abstract

This thesis is aimed at tackling the multivariate integration problem (with
respect to quasi-Monte Carlo-rules) in the space of generalized Walsh se-
ries. To this end, the family of generalized Walsh functions defined over the
finite field Fq, where q is a prime power, is introduced and some of their
most important properties are presented (see also [16], for instance, or [6]
for a survey on the integer-base case). Furhtermore, after having outlined
the basic principles of reproducing kernel Hilbert spaces (see, e.g.,[1]), the
information that is hereby elaborated is deployed to construct the weighted
Hilbert space of generalized Walsh series over Fq, i.e. Hwal,s,β,γ , and to find
its reproducing kernel Kwal,s,β,γ , which, as is shown in the course of this the-
sis, may be simplified such that it can be evaluated computationally, (see [6]
for the prime case). This fact immediately comes into play when analizing
the error behavior of quasi-Monte Carlo-rules applied in Hwal,s,β,γ , since the
worst-case error strongly depends on Kwal,s,β,γ (cf. [5, 6]). In particular, the
employment of digital pt,m, sq-nets (see [6], for instance) as sample points
for quasi-Monte Carlo integration is investigated, which helps to relate the
worst-case error to the so-called dual net and thereby reduces the compu-
tational cost and, above all, to provide existence results for “good” sample
points (see, e.g., [6] for the prime case). Besides, also (strong) tractability
of integration in Hwal,s,β,γ is taken into consideration to determine the qual-
ity of quasi-Monte Carlo integration in this space resulting in necessary as
well as sufficient conditions on the sequence of weights γ “ pγjqjPN (see [6]
again, for instance). In order to move towards concrete point sets, four con-
struction algorithms for digital nets over Fq are presented. These include the
component-by-component construction, a Korobov type construction, the
construction method by Niederreiter and the construction method by Sobol‘,
where the first two are examples for generating so-called polynomial lattices
(see also [4, 5]). Moreover, it is shown that all of these algorithms (except for
the Korobov type construction, which has its advantage in the complexity of
its construction) satisfy an estimate for the worst-case error which is indepen-
dent of the dimension s under certain conditions and are hence candidates
for exploiting tractability and strong tractability of integration in Hwal,s,β,γ .
For quasi-Monte Carlo-rules using point sets obtained by the Korobov type
construction it is still possible (again, under certain conditions) to bound the
worst-case error with a polynomial dependence on the dimension and thus
tractability applies, nevertheless, (see [3, 4] for the prime case).





Eidesstattliche Erklärung i

Eidesstattliche Erklärung
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Introduction 1

1 Introduction

We are primarily interested in approximating the integral of a function f
over the s-dimensional unit cube r0, 1qs by using an equally weighted n-point
quadrature rule, i.e.

ż

r0,1qs
fpxq dx «

1

n

n´1
ÿ

h“0

fpxhq,

where x0, . . . ,xn´1 are deterministically chosen sample points. Rules of the
above form are usually referred to as quasi-Monte Carlo-rules (QMC-rules).
Note that, in the above expression, the left handside equals the mean of the
function f over the unit cube. Thus, it is a reasonable approach to use the
arithmetic mean of f with respect to the sample points chosen as an approx-
imation, (cf. [6, p. 16]).

General theory on this topic confirms the self-suggesting suspicion that
the error behavior of multivariate integration by means of QMC-rules largely
depends on the choice of sample points as well as on which functions are to
be approximated (see [5, Remark 2.19], for instance). Hence, in this thesis
we will clearly set out which function space and which kind of point sets we
will restrict ourselves to.

To this end we introduce so-called generalized Walsh functions over the
finite field Fq, where q denotes a prime power. These are, generally speak-
ing, a family of special step functions in whose definition finite fields play
an essential role. Finally, our working space Hwal,s,β,γ comprises generalized
Walsh series, i.e. series of generalized Walsh functions equipped with com-
plex coefficients, with finite norm (the respective norm will be introduced in
Section 2.4).

As it turns out, Hwal,s,β,γ is a reproducing kernel Hilbert space. These
may be briefly described as Hilbert spaces of functions for which there ex-
ists a bivariate function K with the properties that K is contained in the
Hilbert space whenever we fix one variable and, furthermore, in some sense
it represents any other function in this space via the inner product (see Def-
inition 2.1 for a full explanation).

Secondly, the point sets we intend to employ are so-called digital pt,m, sq-
nets over the finite field Fq. pt,m, sq nets were originally introduced by
H. Niederreiter in [13]. These are special point sets consisting of qm points
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in r0, 1qs for which it is known that the parameter t indicates how well the
points are distributed in r0, 1qs (cf. [5, Chapter 5.5.1], for instance). Now,
digital pt,m, sq-nets over Fq are pt,m, sq-nets which are constructed from a
choice of s freely selectable mˆm matrices over Fq and which constitute the
most widely used construction scheme for pt,m, sq-nets in practical applica-
tions, (cf. [6, p. 158]).

For determining the quality of applying digital nets in QMC-integration
in Hwal,s,β,γ with respect to the speed of convergence we are mainly interested
in two things, namely the worst-case error and (strong) tractability. The first
term hereby indicates how large the actual error, i.e.

ˇ

ˇ

ˇ

ˇ

ˇ

ż

r0,1qs
fpxq dx´

1

n

n
ÿ

h“1

fpxhq

ˇ

ˇ

ˇ

ˇ

ˇ

,

can get for f taken from the closed unit ball of Hwal,s,β,γ and for given sample
points x1, . . . ,xn. Whereas the term tractability so to speak states whether
there exists a QMC-rule such that the minimal number of points necessary
to attain a certain error bound ε P p0, 1q is of magnitude order sbε´a for every
s P N, a, b ě 0. If b “ 0 we speak of strong tractability.

So, consequently, in this thesis it is investigated, how large the worst-case
error actually is and whether, or, more precisely, under which conditions
integration in Hwal,s,β,γ is (strongly) tractable and above all, if there exist
digital nets such that (strong) tractability can be exploited. It is to mention
that finding the answer to these questions is vastly faciliated by exploiting
the fact that Hwal,s,β,γ is a reproducing kernel Hilbert space.

Moreover, since the study of the above paragraph merely provides ex-
istence results, the fifth chapter of this thesis is dedicated to present four
well-known algorithms to construct digital nets over Fq – namely the con-
struction method by Niederreiter, the construction method by Sobol‘ and
another two for constructing polynomial lattices – which fulfill the above
properties.

As a matter of fact, much of the theory given in this thesis has already
been established in [3, 4, 5, 6] for the case where q is a prime number.
Therefore, the integral part of this work is to extend the definitions given
therein, to adapt the results accordingly and to adjust or renew the proofs of
these results. Furthermore, the fact that Hwal,s,β,γ actually is a (reproducing
kernel) Hilbert space shall be demonstrated in a clear and precise way.
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2 The reproducing kernel Hilbert space Hwal,s,β,γ

2.1 General theory on reproducing kernel Hilbert spaces

This section is dedicated to briefly discuss reproducing kernels and reproduc-
ing kernel Hilbert spaces and some of their basic properties. First off, we
need to define the respective terms.

Definition 2.1 (Reproducing kernel Hilbert space). Let H be a Hilbert
space of functions f : X Ñ C, where X is a given set. Let the inner
product on H be denoted by x¨ , ¨y. Then H is a reproducing kernel
Hilbert space iff there exists a function K : X ˆ X Ñ C for which the
following two properties hold:

(RK1) @y P X : Kp¨, yq P H and

(RK2) @y P X @f P H : fpyq “ xf,Kp¨, yqy,

where Kp¨, yq is viewed at as a function in the first variable and also the
inner product is taken with respect to the first variable.

A function K satisfying the above properties is referred to as a
reproducing kernel for H . Additionally, it should be mentioned that
(RK2) in the above definition is called reproducing property.

(cf. [5, Definition 2.5])

Certainly, a comprehensive theory has evolved around reproducing kernel
Hilbert spaces (see [1], for instance). In order to let the reader become more
familiar with this concept the proposition below summarizes some of their
basic properties.

Proposition 2.2. Let X be a set. Then the following holds:

(i) Let H be a Hilbert space of functions f : X Ñ C. Then a repro-
ducing kernel for H exists if and only if the linear functional

Ty : H ÝÑ C
f ÞÝÑ fpyq (1)
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is bounded for every y P X (cf. [1, p. 343, item 2]).

Furthermore, a function K : X X̂ Ñ C which fulfills (RK1) and (RK2)
is

(ii) symmetric, i.e.

@x, y P X : Kpx, yq “ Kpy, xq,

(iii) positive semi-definite, which means that

@nPN @a0, . . . , an´1 P C @x0, . . . , xn´1 P X

it holds that
n´1
ÿ

i,j“0

aiajKpxi, xjq ě 0;

(iv) and unique (cf. [5, p. 22, items P3, P5, P4 and Remark 2.7]).

Proof. (Item (i) taken from [1, pp. 343f.], items (ii)-(iv) adapted from [5,
p. 22]).

Let X be a set.

(i) Let H be as stated above and Ty be defined as in (1) for an arbitrary
y P X. Furthermore, let K be a reproducing kernel for H . By using
the reproducing property of K in the second step for f one obtains

|Tyf | “ |fpyq|“ |xf,Kp¨, yqy|
ď ‖f‖‖Kp¨, yq‖

as a consequence of the Cauchy-Schwarz inequality. Since – due to
(RK1) – the function Kp¨, yq is in H , we may deduce that Ty is
bounded.

Conversely, assume that Ty defined by Tyf “ fpyq is a bounded func-
tional for every y P X. Then, from Riesz’ representation theorem it
follows that there exists a function ky P H such that

fpyq “ xf, kyy
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for every f P H . Clearly, Kpx, yq :“ kypxq is a reproducing kernel for
H .

Now, let K : XˆX Ñ C be a function satisfying (RK1) and (RK2).

(ii) The symmetry of Kpx, yq follows from the fact that

Kpx, yq “ xKp¨, yq, Kp¨, xqy “ xKp¨, xq, Kp¨, yqy “ Kpy, xq.

(iii) Let n P N. Then, for any choice of a0, . . . , an´1 P C and for every
x0, . . . , xn´1 P X it holds that

n´1
ÿ

i,j“0

aiajKpxi, xjq “
n´1
ÿ

i,j“0

aiajxKp¨, xjq, Kp¨, xiqqy

“

C

n´1
ÿ

j“0

ajKp¨, xjq,
n´1
ÿ

i“0

aiKp¨, xiq

G

“

∥∥∥∥∥n´1ÿ

i“0

aiKp¨, xiq

∥∥∥∥∥
2

ě 0,

which proves the statement.

(iv) For the uniqueness part assume that there exist two functions K and K̃
mapping from XˆX onto C which satisfy (RK1) and (RK2) and therefore
also (ii). Then,

K̃px, yq “ xK̃p¨, yq, Kp¨, xqy “ xKp¨, xq, K̃p¨, yqy “ Kpy, xq “ Kpx, yq

for every x,y P X.

Later, in Section 4, the concept of reproducing kernel Hilbert spaces will
be used to obtain error bounds for Quasi-Monte Carlo-rules (QMC-rules).
As these entail evaluating a function f at previously chosen sample points,
it seems to be a reasonable prerequisite that the functional Ty from Propo-
sition 2.2.(i) is continuous (cf. [5, p. 25]) and this is, as we have just seen,
equivalent to the existence of a reproducing kernel.

Another interesting fact (among many others) is given by N. Aronszajn
in [1, p. 344]. It states that any bivariate function fulfilling items (ii) and (iii)
from Proposition 2.2, i.e. symmetry and positive semi-definiteness, already
uniquely determines a reproducing kernel Hilbert space and its inner product.
This justifies the usage of “reproducing kernel” as a stand-alone term.
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2.2 Generalized Walsh functions over a finite field

Generalized Walsh functions may appear in many different forms. For in-
stance in [6, Definitions 1, 2] one can find a definition of such using a general
integer base b ě 2, or, as G. Pirsic did in [15, Definition 9], they can also be
defined over groups. The aim of this chapter is to introduce Walsh functions
over the finite field Fq, where q is a prime power. For the following introduc-
tory part we closely follow [16, p. 388].

In all of what follows let q “ pr, where p is a prime number and r P N.
Furthermore, for every positive integer b we denote by Zb the residue class
ring modulo b, which we will usually identify with the least residue system
modulo b, i.e. t0, 1, . . . , b ´ 1u. Additionally, let ϕ1 : Zq Ñ Fq be a bijection
with ϕ1p0q “ 0, i.e. the zero element of Zq is mapped onto the zero element
of Fq. It follows from general theory of finite fields that there exists an iso-
morphism between the additive groups Fq and Zrp, name it ψ. By setting
η :“ ψ ˝ ϕ1 one obtains the commutative diagram given in Figure 1.

Zq
ϕ1 //

η

��

Fq

ψ

��
Zrp

Figure 1: Commutative diagram, (cf. [16, Definition 2.3]).

This leads to the definition of those generalized Walsh functions which
will be investigated in this thesis.

Definition 2.3 (Generalized Walsh functions). First, we consider the
one-dimensional case. To this end, let q “ pr, ϕ1, ψ and η be as de-
scribed in the paragraph above. Additionally, let k P N0 have the base q
representation k “ κ1`κ2q`¨ ¨ ¨`κmq

m´1 where κj P Zq for all 1 ď j ď m.

Furthermore, identify x P r0, 1q, too, with its base q representation,
i.e. x “ x1q

´1 ` x2q
´2 ` ¨ ¨ ¨ . For reasons of uniqueness of this represen-

tation it is demanded, that for any natural j there exists an index j0 ě j
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such that xj0 is different from q ´ 1.

Then we call the function

Fq ,ϕ1walk : r0, 1q ÝÑ C

x ÞÝÑ

m
ź

l“1

exp

ˆ

2πi

p
ηpκlq ¨ ηpxlq

˙

,

the one-dimensional kth generalized Walsh function over Fq with respect
to ϕ1, where “ i” denotes the imaginary unit and “¨” stands for the
Euklidean product

Now, the s-dimensional case can be constructed from the above one.
For this reason let s ě 2, x “ px1, . . . , xsq P r0, 1q

s and k “ pk1, . . . , ksq P
Ns

0. The respective multivariate generalized Walsh function is then de-
fined as Fq ,ϕ1walk : r0, 1qs Ñ C,

Fq ,ϕ1walkpxq :“
s
ź

j“1

Fq ,ϕ1walkjpxjq.

(cf. [16], Definition 2.3)

To avoid tedious notation the subscripts Fq and ϕ1 will be omitted from
now on, unless they are required to overcome ambiguities. So, simply the
abbreviation walk (or walk respectively) will be used. Also, in what follows
the term “generalized” will be dropped most of the time.

2.3 Basic properties of generalized Walsh functions over
Fq

In this section we aim at gathering important information on Walsh functions
defined over a finite field, some of which will be of essential use later. For a
better understanding it is necessary to point out that the variables q “ pr

as well as the mappings ϕ1, ψ and η “ ψ ˝ ϕ1 have already been arbitrarily
chosen or defined in the first paragraph of Section 2.2.

First of all, we introduce two binary operations ‘ϕ1 and aϕ1 .
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Definition 2.4. Let x “
ř8

i“w xiq
´i and y “

ř8

i“w yiq
´i, w P Z. Then,

x‘ϕ1 y :“
8
ÿ

i“w

aiq
´i, where ai “ ϕ´11 pϕ1pxiq ` ϕ1pyiqq,

xaϕ1 y :“
8
ÿ

i“w

biq
´i, where bi “ ϕ´11 pϕ1pxiq ´ ϕ1pyiqq.

Additionally, aϕ1x is set as 0 aϕ1 x and if x and y are vectors of
the same dimension the above operations are understood as being taken
componentwise.

In accordance to Definition 2.3 it is required that the sequences ai
and bi as given above do not possess infinitely many consecutive elements
equal to q ´ 1, otherwise we consider the operation not defined.

(cf. [16, p. 388])

Again, one should keep in mind that the operations ‘ϕ1 and aϕ1 as de-
fined above depend on ϕ1. As ϕ1 is considered being arbitrarily chosen,
however, the more convenient notation ‘ and a will be used from now on.

The following theorem provides a close connection between the product
of Walsh functions and the binary operations from above.

Theorem 2.5. For all k, l P N0 and all x, y P r0, 1q it holds that

walkpxqwallpxq “ walk‘lpxq and walkpxqwallpxq “ walkalpxq,

walkpxqwalkpyq “ walkpx‘ yq and walkpxqwalkpyq “ walkpxa yq,

wherever x‘ y and xa y respectively is defined.

(cf. [16, Proposition 2.4, item 1])

Proof. Let k “ κ1 ` ¨ ¨ ¨ ` κmq
m´1, l “ λ1 ` ¨ ¨ ¨ ` λmq

m´1 and x “ x1q
´1 `

x2q
´2` ¨ ¨ ¨ be the base q representations of k, l and x. Then it follows from
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the facts that ψ is an isomorphism and ψ “ η ˝ ϕ´11 that

walkpxqwallpxq “
m
ź

j“1

exp

ˆ

2πi

p
ηpxjq ¨

`

ηpκjq ` ηpλjq
˘

˙

“

m
ź

j“1

exp

ˆ

2πi

p
ηpxjq ¨ ψ

`

ϕ1pκjq ` ϕ1pλjq
˘

˙

“

m
ź

j“1

exp

ˆ

2πi

p
ηpxjq ¨ η ˝ ϕ

´1
1

`

ϕ1pκjq ` ϕ1pλjq
˘

˙

“ walk‘lpxq.

The proofs of the other identities follow exactly the same pattern. It is
only left to mention that complex conjugation yields a minus in the exponent
and therefore a “a” is obtained in the end.

If one takes a closer look on the definition of Walsh functions over Fq one
might notice that these are step functions, which is indeed the case, as the
following lemma shows.

Lemma 2.6. Let k P N and m be a positive integer such that
qm´1 ď k ă qm. Then the restriction of walk to an interval of the
form ra{qm, pa` 1q{qmq Ď r0, 1q is walkpa{q

mq identically. Furthermore,
wal0 ” 1.

(cf. [5, Proposition A.2])

Proof. Here, we use the same approach as in [5, pp. 559f.]. Since qm´1 ď
k ă qm the q-adic expansion of k is of the form k “ κ1` κ2q` ¨ ¨ ¨ ` κmq

m´1.
Let a “ α1 ` α2q ` ¨ ¨ ¨ ` αmq

m´1 be the q-adic expansion of an integer a,
0 ď a ă qm. Thus, J “ ra{qm, pa` 1q{qmq is contained in r0, 1q.

Any x P J possesses a q-adic expansion of the form

x “ αmq
´1
` ¨ ¨ ¨ ` α1q

´m
` ξm`1q

´pm`1q
` ξm`2q

´pm`2q
` ¨ ¨ ¨

with suitable digits ξj, 0 ď ξj ď q´ 1, j ě m` 1. We notice that the first m
summands are the same as those in the q-adic expansion of a{qm. We now
consider this observation in our definition of Walsh functions (Definition 2.3)
and obtain
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walkpxq “
m
ź

l“1

exp

ˆ

2πi

p
ηpκlq ¨ ηpαm`1´lq

˙

“ walk

ˆ

a

qm

˙

.

If k “ 0 we use the fact that ϕ1p0q “ 0 in Fq and, since ψ is an isomor-
phism, we have ψp0q “ 0, the zero element in Zrp, and thus ηp0q “ 0. From
this one sees immediately that for any x P r0, 1q it holds that wal0pxq “ 1.

By exploiting the result of this lemma we obtain another interesting prop-
erty of Walsh functions over Fq.

Lemma 2.7. We have
ż 1

0

wal0pxq dx “ 1 and

ż 1

0

walkpxq dx “ 0 if k P N.

(cf. [16, Proposition 2.4, item 3])

Proof. The first identity follows immediately from Lemma 2.6, as wal0pxq “ 1
for any x P r0, 1q.

Now, assume that k P N with q-adic expansion κ1 ` κ2q ` ¨ ¨ ¨ ` κmq
m´1.

Then, as it was also done in the proof of [5, Proposition A.9], by applying
Lemma 2.6 the integral can be rewritten in the following way:

ż 1

0

walkpxq dx “
qm´1
ÿ

a“0

ż a`1
qm

a
qm

walkpxq dx “
1

qm

qm´1
ÿ

a“0

walk

ˆ

a

qm

˙

.

This equals zero, for if 0 ď a ă qm with q-adic expansion

a “ α1 ` α2q ` ¨ ¨ ¨ ` αmq
m´1,

then a{qm has the q-adic expansion

a

qm
“ αmq

´1
` ¨ ¨ ¨ ` α1q

´m
“: a1q

´1
` ¨ ¨ ¨ ` amq

´m.

Therefore we can adapt the proof of [5, Lemma A.8] to our purposes and
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obtain

qm´1
ÿ

a“0

walk

ˆ

a

qm

˙

“

qm´1
ÿ

a“0

exp

ˆ

2πi

p
ηpκ1q ¨ ηpa1q

˙

¨ ¨ ¨ exp

ˆ

2πi

p
ηpκmq ¨ ηpamq

˙

“

m
ź

l“1

˜

q´1
ÿ

j“0

exp

ˆ

2πi

p
ηpκlq¨ηpjq

˙

¸

“

m
ź

l“1

¨

˝

ÿ

aPZrp

exp

ˆ

2πi

p
ηpκlq¨a

˙

˛

‚,

since q “ pr and η : Zq Ñ Zrp is bijective.

For 1 ď l ď m and 1 ď j ď r we denote by ηpjqpκlq the jth component of
the vector ηpκlq, i.e.

ηpκlq :“
`

ηp1qpκlq, . . . , η
prq
pκlq

˘J
,

where yJ denotes the transpose of a vector y.

Now we can continue as follows:

m
ź

l“1

¨

˝

ÿ

aPZrp

exp

ˆ

2πi

p
ηpκlq¨a

˙

˛

‚ “

m
ź

l“1

r
ź

j“1

˜

p´1
ÿ

a“0

exp

ˆ

2πi

p
ηpjqpκlqa

˙

¸

.

As k ą 0 we know that there exists a pair of integers pl0, j0q, 1 ď l0 ď m and
1 ď j0 ď r, such that ηpj0qpκl0q ‰ 0. For such a pair the sum in the above
expression is a geometric sum which simplifies to

p´1
ÿ

a“0

exp

ˆ

2πi

p
ηpj0qpκl0qa

˙

“
1´ exp

`

2πi ηpj0qpκl0q
˘

1´ exp
´

2πi
p
ηpj0qpκl0q

¯ “ 0.

Thus, the whole double-product equals zero and hence

ż 1

0

walkpxq dx “ 0

for k P N.

With this knowledge it is now easy to prove the following orthogonality
properties.
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Theorem 2.8. For any k,l P N0 we have

ż 1

0

walkpxqwallpxq dx “

"

1 if k “ l,
0 else.

(cf. [16, Proposition 2.4, item 4])

Proof. (Adapted from [5, Proposition A.10].)

From Theorem 2.5 we know that
ż 1

0

walkpxqwallpxq dx “

ż 1

0

walkalpxq dx.

Now, since ϕ1 is bijective and ϕ1p0q “ 0 in Fq it follows that

k a l “ 0 ðñ k “ l.

Applying Lemma 2.7 completes the proof.

Another very important result has been shown by G. Pirsic in [15, Satz 3],
stating that the system of Walsh functions over groups (as defined therein) is
dense in L2pr0, 1q

s
q for any dimension s ě 1. As a special case of this result

together with Theorem 2.8 we obtain:

Theorem 2.9. Let s ě 1 be an integer. Then twalk : k P Ns
0u is a com-

plete orthonormal system in L2pr0, 1q
s
q.

Proof. Can be found in [15, Satz 3].

Note that, due to this result, we can assign any function f which is square
integrable on r0, 1qs to a series of the form

fpxq „
ÿ

kPNs0

f̂pkqwalkpxq, (2)

where

f̂pkq :“

ż

r0,1qs
fpxqwalkpxq dx. (3)
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Later, in Section 2.4 we will call a series as given in (2) a generalized Walsh
series, where the coefficient f̂pkq will be referred to as the kth Walsh-Fourier
coefficient (see [6, p. 154], for instance).

Moreover, according to [5, Theorem A.20], we can even obtain equality
in (2) if f is continuous and

ÿ

kPNs0

ˇ

ˇ

ˇ
f̂pkq

ˇ

ˇ

ˇ
ă 8.

To provide the reader with a better overview, the next proposition sum-
marizes and generalizes the results shown so far for Walsh functions over
Fq.

Proposition 2.10. Let s ě 1 be an integer.

(i) For all k, l P Ns
0 and for all x, y P r0, 1qs the following identities

hold:

walkpxqwallpxq“walk‘lpxq and walkpxqwallpxq“walkalpxq,

walkpxqwalkpyq“walkpx‘ yq and walkpxqwalkpyq“walkpxa yq,

provided that x‘ y and xa y are defined.

(ii) Denote by 0 “ p0, . . . , 0qJ the s-dimensional zero vector. Then:

ż

r0,1qs
wal0pxq dx “ 1 and

ż

r0,1qs
walkpxq dx “ 0 if k P Ns.

(iii) The system twalk : k P Ns
0u is a complete orthonormal system in

L2 pr0, 1q
sq.

(cf. [16, Proposition 2.4])

Proof. Item (i) follows immediately from the one-dimensional case (Theo-
rem 2.5) and the definition of multivariate Walsh functions. Item (ii) can
easily be derived from Lemma 2.7 by a straightforward application of Fubini
and for item (iii) we once again refer to [15, Satz 3].

Now we dispose of all necessary requirements to define and work with the
weighted Hilbert space Hwal,s,β,γ .
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2.4 The weighted Hilbert space of generalized Walsh
series

In this section we will follow the approach used by J. Dick and F. Pil-
lichshammer in [6, Section 2.2] or by G. Pirsic and F. Pillichshammer in
[17, pp. 411f.]. This means we introduce the one-dimensional weighted
Hilbert space of functions Hwal,β,γ first and consider the general case later,
as many results do not need a lot of improvements in order to be generalized.
In fact, the s-dimensional space will simply be defined as the tensor product
of s one-dimensional spaces.

2.4.1 The one-dimensional case

From now on let β ą 1. Then, for γ ą 0 and k P N0, we define

rpβ, γ, kq :“

"

1 if k “ 0,
γq´βtlogq ku if k P N, (4)

(cf. [17, p. 411]).

Again, the dependency of rpβ, γ, kq on q is neglected in this way of nota-
tion, as we consider it fixed.

Furthermore, following the discussion from the paragraph after Theo-
rem 2.9, we will now introduce generalized Walsh series.

Definition 2.11 (Generalized Walsh series). A generalized Walsh series
is a function f which is representable by a series of the form

fpxq “
8
ÿ

k“0

f̂pkqwalkpxq,

where x P r0, 1q and f̂pkq P C are the so-called Walsh-Fourier coefficients.

(cf. [5, Definition A.14])

Once more we would like to point out, that we will usually simply refer
to such as Walsh series.
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The term Walsh-Fourier coefficient seems to be chosen rather inappropri-
ately, as, at a first glance, it is not obviously related to a Fourier coefficient.
By a short review of the L2-case (see (3)), however, one can convince oneself
of the contrary.

Besides, note that whenever a Walsh series is uniformly convergent we
can apply the theorem of dominated convergence to find that

f̂pkq
Thm. 2.8
“

8
ÿ

l“0

f̂plq

ż 1

0

wallpxqwalkpxq dx

“

ż 1

0

8
ÿ

l“0

f̂plqwallpxqwalkpxq dx

“

ż 1

0

fpxqwalkpxq dx (5)

for every k P N0 (cf. [5, Remark A.15]). Thus we have an analogous result
as in (3).

The next step to arrive at a Hilbert space is to define an inner product.
So, for Walsh series f and g with Walsh-Fourier coefficients f̂pkq and ĝpkq
respectively, k P N0, we set

xf, gywal,γ :“
8
ÿ

k“0

rpβ, γ, kq´1 f̂pkq ĝpkq.

Furthermore, we define

Hwal,β,γ :“

#

f “
8
ÿ

k“0

f̂pkqwalk : f̂pkq P C and xf, fywal,γ ă 8

+

,

(cf. [17, p. 411]).

Indeed, x¨, ¨ywal,γ is an inner product, as the following lemma shows.

Lemma 2.12. Hwal,β,γ being defined as above is a pre-Hilbert space.

Proof. We need to show that x¨, ¨ywal,γ satisfies all properties of an inner prod-
uct. It is obvious that symmetry and linearity in the first argument hold.
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For positive definiteness we consider an arbitrary Walsh series

fpxq “
8
ÿ

k“0

f̂pkqwalkpxq,

x P r0, 1q, and, since rpβ, γ, kq ą 0 for any k P N0, we immediately see that

xf, fywal,γ “
8
ÿ

k“0

rpβ, γ, kq´1
ˇ

ˇ

ˇ
f̂pkq

ˇ

ˇ

ˇ

2

ě 0.

Now, if we assume xf, fywal,γ “ 0, the above implies that f̂pkq “ 0 for all
k P N0. Inserting this into the definition of f shows that f has to be the zero
function.

The following argument is taken from an adendum to [6] by J. Dick.

Remark 2.13. From Lemma 2.12 we deduce that we cannot find two differ-
ent functions f, g P Hwal,β,γ for which f̂pkq “ ĝpkq holds for all k P N0, where

f̂pkq, ĝpkq denote the respective Walsh-Fourier coefficients, as this would vi-
olate positive definiteness of the inner product. Hence, Hwal,β,γ contains only

those functions f which are equal to
ř8

k“0 f̂pkqwalkpxq everywhere on r0, 1q
and which satisfy xf, fywal,γ ă 8.

The only thing that keeps Hwal,β,γ from being a Hilbert space is com-
pleteness. This, however, is already the case due to the next lemma. As a
matter of fact, we will show a more general result which can also be referred
to in the higher dimensional case.

Lemma 2.14. Let c “ pckqkPN0 be a sequence of positive real numbers.
On the set

`2c :“

#

x “ pxkqkPN0 P CN :
8
ÿ

k“0

ck|xk|
2
ă 8

+

we define an inner product by

xx, yy :“
8
ÿ

k“0

ckxkyk.

Then `2c is complete w.r.t. } ¨ } “
a

x¨, ¨y.
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Proof. (Source: personal communication with G. Leobacher and F. Pillichsham-
mer)

It is clear that x¨, ¨y actually is an inner product, as ck ą 0 for all k P N0,
so the definition makes sense.

For the completeness part consider a Cauchy sequence in `2c , say pxpnqqnPN.

Then, the sequence px
pnq
k qnPN, too, is a Cauchy sequence for any k ě 0, as we

have

ck

ˇ

ˇ

ˇ
x
pnq
k ´ x

pmq
k

ˇ

ˇ

ˇ

2

ď

8
ÿ

l“0

cl

ˇ

ˇ

ˇ
x
pnq
l ´ x

pmq
l

ˇ

ˇ

ˇ

2

“
›

›xpnq ´ xpmq
›

›

2

for all n, m P N and all k P N0. Any such sequence px
pnq
k qnPN, however,

converges towards a complex number and hence we obtain a sequence, call
it x “ pxkqkPN0 , with

xk “ lim
nÑ8

x
pnq
k

for every k P N0.

Now, let ε ą 0. Since pxpnqqnPN is a Cauchy sequence there exists an
n0 P N such that for any integers n,m ě n0 we have

N
ÿ

k“0

ck

ˇ

ˇ

ˇ
x
pnq
k ´ x

pmq
k

ˇ

ˇ

ˇ

2

ď
›

›xpnq ´ xpmq
›

›

2
ă ε2

for all N P N0. Hence, also

N
ÿ

k“0

ck

ˇ

ˇ

ˇ
xk ´ x

pmq
k

ˇ

ˇ

ˇ

2

ď ε2

holds for any non-negative integer N and m sufficiently large. Therefore we
obtain

8
ÿ

k“0

ck

ˇ

ˇ

ˇ
xk ´ x

pmq
k

ˇ

ˇ

ˇ

2

ď ε2

for m ě n0. This implies that x´ xpmq P `2c and hence x P `2c . Consequently,
pxpnqqnPN converges (towards x) in `2c .

This allows us to introduce Hwal,β,γ as a Hilbert space.
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Corollary 2.15. Let γ ą 0 and β ą 1. Then

Hwal,β,γ :“

#

f “
8
ÿ

k“0

f̂pkqwalk : f̂pkq P C and xf, fywal,γ ă 8

+

is a Hilbert space.

(cf. [17, p. 411]).

Proof. From Lemma 2.12 we already know that x¨, ¨ywal,γ is an inner product
on Hwal,β,γ. Furthermore, we can uniquely identify a function f P Hwal,β,γ

with the sequence of its Walsh-Fourier coefficients, i.e.
´

f̂pkq
¯

kPN0

(see Re-

mark 2.13), and hence we can apply Lemma 2.14 to find that Hwal,β,γ is
complete.

Now we consider the function

Kwal,β,γpx, yq :“
8
ÿ

k“0

rpβ, γ, kqwalkpxqwalkpyq,

(cf. [17, p. 411]). To verify that this is the reproducing kernel for Hwal,β,γ

we need to prove the following lemma first.

Lemma 2.16. Let γ ą 0, β ą 1 and rpβ, γ, kq be given as in (4). Then
the following identity holds:

8
ÿ

k“0

rpβ, γ, kq “ 1` γµpβq,

where

µpβq :“
qβpq ´ 1q

qβ ´ q
.

(cf. [6, p. 155])

Proof. By the definition of rpβ, γ, kq we have
8
ÿ

k“0

rpβ, γ, kq “ 1` γ
8
ÿ

k“1

q´βtlogq ku.
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Now, consider a fixed k P N. For such a k we can find an a P N0 such that
qa ď k ă qa`1. Therefore it is true that a ď logqpkq ă a ` 1 and hence
a “ tlogq ku. With this we are able to simplify the above infinite sum in the
same way as it was done in [6, p. 155], giving

8
ÿ

k“1

q´βtlogq ku
“

8
ÿ

a“0

q´βa
qa`1´1
ÿ

k“qa

1 “

8
ÿ

a“0

q´βapqa`1 ´ qaq

“ pq ´ 1q
8
ÿ

a“0

`

q1´β
˘a
.

Since β ą 1 we have q1´β ă 1, which means that the above expression is a
geometric series. Thus, we finally obtain

8
ÿ

k“0

rpβ, γ, kq “ 1` γpq ´ 1q
1

1´ q1´β
“ 1` γ

qβpq ´ 1q

qβ ´ q
“ 1` γµpβq.

Theorem 2.17. The previously defined function

Kwal,β,γpx, yq “
8
ÿ

k“0

rpβ, γ, kqwalkpxqwalkpyq

is the reproducing kernel for the weighted Hilbert space Hwal,β,γ.

(cf. [17, p. 411])

Proof.

(RK1) We need to show that for any y P r0, 1q we have Kwal,β,γp¨, yq P
Hwal,β,γ, i.e.

@y P r0, 1q : ‖Kwal,β,γp¨, yq‖wal,γ ă 8.

Obviously, Kwal,β,γp¨, yq is a Walsh series with Walsh-Fourier coefficients

K̂wal,β,γp¨, yqpkq “ rpβ, γ, kqwalkpyq (6)
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for y P r0, 1q and all k P N0. Hence we obtain (cf. [6, p. 155])

‖Kwal,β,γp¨, yq‖2wal,γ “
8
ÿ

k“0

rpβ, γ, kq´1
ˇ

ˇ

ˇ
K̂wal,β,γp¨, yqpkq

ˇ

ˇ

ˇ

2

“

8
ÿ

k“0

rpβ, γ, kq
ˇ

ˇ

ˇ
walkpyq

ˇ

ˇ

ˇ

2

“

8
ÿ

k“0

rpβ, γ, kq.

As the latter expression equals 1` γµpβq (see Lemma 2.16) it is finite
and thus Kwal,β,γp¨, yq P Hwal,β,γ for all y P r0, 1q.

(RK2) We know that any function f P Hwal,β,γ can be written as

fpxq “
8
ÿ

k“0

f̂walpkqwalkpxq.

Therefore, for all f P Hwal,β,γ and y P r0, 1q we have

xf,Kwal,β,γp¨, yqywal,γ
p6q
“

8
ÿ

k“0

f̂pkqwalkpyq “ fpyq,

(cf. [6, p. 155]). This completes the proof.

Even though we have found the reproducing kernel for Hwal,β,γ it is not
yet of practical use, as by definition it involves evaluating an infinite sum.
Fortunately, Kwal,β,γ possesses the very favorable property that it can be sim-
plified further. So the main emphasis of the subsequent paragraphs will be
on attaining a closed form which can be calculated computationally. To this
end we follow the steps given in [6, pp. 155f.] and adapt them accordingly.

Using the same trick as in the beginning of the proof of Lemma 2.16 we
obtain

Kwal,β,γpx, yq “ 1` γ
8
ÿ

k“1

q´βtlogq ku walkpxqwalkpyq

“ 1` γ
8
ÿ

a“0

qa`1´1
ÿ

k“qa

q´βtlogq ku walkpxa yq

“ 1` γ
8
ÿ

a“0

q´βa
qa`1´1
ÿ

k“qa

walkpxa yq. (7)
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We will now proceed by breaking down the problem, starting with the
simplification of

Dapx, yq :“
qa`1´1
ÿ

k“qa

walkpxa yq, a P N0. (8)

Lemma 2.18. Let a P N0 and Da be as in (8). Furthermore, let 0 ď
x, y ă 1 with q-adic expansions x “ x1q

´1` x2q
´2` ¨ ¨ ¨ and y “ y1q

´1`

y2q
´2 ` ¨ ¨ ¨ respectively. Then

Dapx, yq “

$

&

%

0 Di P t1, . . . , au : xi ‰ yi,
pq ´ 1qqa @i P t1, . . . , a` 1u : xi “ yi,
´qa else.

(cf. [6, p. 156])

Proof. Any k P tqa, qa ` 1, . . . , qa`1 ´ 1u has a q-adic expansion of the form
k “ κ1 ` κ2q ` . . . ` κaq

a´1 ` κa`1q
a with 1 ď κa`1 ă q and κi P Zq for

1 ď i ď a. Additionally, we abbreviate ηpxlq ´ ηpylq as %l P Zrp for all
1 ď l ď a` 1. Then, similarly to [6, p. 156], we can rewrite Dapx, yq as

qa`1´1
ÿ

k“qa

walkpxa yq “
qa`1´1
ÿ

k“qa

a`1
ź

l“1

exp
´2πi

p
ηpκlq ¨ %l

¯

“

qa`1´1
ÿ

k“qa

exp

ˆ

2πi

p
ηpκ1q ¨ %1

˙

¨ ¨ ¨ exp

ˆ

2πi

p
ηpκa`1q ¨ %a`1

˙

“

˜

q´1
ÿ

κa`1“1

exp

ˆ

2πi

p
ηpκa`1q ¨ %a`1

˙

¸

ˆ

ˆ

a
ź

i“1

q´1
ÿ

κi“0

exp

ˆ

2πi

p
ηpκiq ¨ %i

˙

.

Now, just as it was done in [6, p. 156] as well, we will distinguish between
two cases and adapt the respective steps.

Case 1: Di P t1, . . . , au : xi ‰ yi.
Then, since η is bijective and ηp0q “ 0, we have %i P Zrpz t0u. Or, more

precisely, for %i “ p%
p1q
i , . . . , %

prq
i q

J we can say that there exists at least
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one index r0 such that %
pr0q
i ‰ 0. W.l.o.g. we set r0 “ 1.

Furthermore, observe that the number of elements in Zrp is pr “ q.
Together with the fact that η : Zq Ñ Zrp is bijective this means that
every element of Zrp appears exactly once in the sum below. Hence,
by rearranging of the summands and using the formula for a geometric
sum in the last but one step we obtain

q´1
ÿ

κi“0

exp

ˆ

2πi

p
ηpκiq ¨ %i

˙

“
ÿ

zPZrp

exp

ˆ

2πi

p
z ¨ %i

˙

“

˜

p´1
ÿ

z1“0

exp

ˆ

2πi

p
z1%

p1q
i

˙

¸

ˆ

ˆ

˜

r
ź

j“2

p´1
ÿ

zj“0

exp

ˆ

2πi

p
zj%

pjq
i

˙

¸

%
p1q
i ‰0
“

1´ exp
´

2πi %
p1q
i

¯

1´ exp
´

2πi
p
%
p1q
i

¯ ˆ

ˆ

˜

r
ź

j“2

p´1
ÿ

zj“0

exp

ˆ

2πi

p
zj%

pjq
i

˙

¸

“ 0.

Case 2: @i P t1, . . . , au : xi “ yi.
This means that for every 1 ď i ď a we have %i “ 0 and therefore

Dapx, yq “ qa
q´1
ÿ

κa`1“1

exp

ˆ

2πi

p
ηpκa`1q ¨ %a`1

˙

(9)

If also xa`1 “ ya`1, then, clearly, Dapx, yq “ qapq ´ 1q.

So now we can assume xa`1 ‰ ya`1 and hence %a`1 ‰ 0. By inserting
this in (9) we obtain

Dapx, yq “ qa

˜

q´1
ÿ

κa`1“0

exp

ˆ

2πi

p
ηpκa`1q ¨ %a`1

˙

´ 1

¸

“ ´qa,

as we have already seen in the first case.
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It solely remains to simplify

φwal,βpx, yq :“
8
ÿ

a“0

q´βaDapx, yq. (10)

Lemma 2.19. Let φwal,β be defined by (10) for x, y P r0, 1q with q-adic
expansions x “ x1q

´1 ` x2q
´2 ` ¨ ¨ ¨ and y “ y1q

´1 ` y2q
´2 ` ¨ ¨ ¨ . Then,

φwal,βpx, yq “

$

&

%

µpβq if x “ y,

µpβq ´ qpi0´1qp1´βqpµpβq ` 1q
if xi0 ‰ yi0 and
xi “ yi for all i ă i0,

where µpβq is defined as in Lemma 2.16, i.e.

µpβq “
qβpq ´ 1q

qβ ´ q
.

(cf. [6, p. 156])

Proof. (Taken from [6, p. 156].)

First assume x “ y. Then, Lemma 2.18 implies that Dapx, yq “ pq ´ 1qqa

and hence

φwal,βpx, yq “ pq ´ 1q
8
ÿ

a“0

qp1´βqa “ µpβq.

Let x “ x1q
´1 ` x2q

´2 ` ¨ ¨ ¨ and y “ y1q
´1 ` y2q

´2 ` ¨ ¨ ¨ be the q-adic
expansions of x and y respectively. If x ‰ y then there exists a smallest
index i0 for which xi0 ‰ yi0 . In this case we obtain Dapx, yq “ qapq ´ 1q for
a ă i0 ´ 1 and Di0´1px, yq “ ´qi0´1. Furthermore, Dapx, yq is zero for all
a ě i0. Thus, we can rewrite φwal,β as follows:
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φwal,βpx, yq “
8
ÿ

a“0

q´βaDapx, yq

“ pq ´ 1q
i0´2
ÿ

a“0

pq1´βqa ´ q´βpi0´1qqi0´1

“ pq ´ 1q
1´ qp1´βqpi0´1q

1´ q1´β
´ q´βpi0´1qp1´βq

“
pq ´ 1qqβ

qβ ´ q
´ qp1´βqpi0´1q

qβpq ´ 1q

qβ ´ q
´ qp1´βqpi0´1q

“ µpβq ´ qp1´βqpi0´1q pµpβq ` 1q .

Putting together the results of the above lemmas we have already found
the sought-for closed form of Kwal,β,γ. We summarize this fact in the next
theorem.

Theorem 2.20. Let β ą 1. Then

Kwal,β,γpx, yq “ 1` γφwal,βpx, yq

holds for all x and y in r0, 1q with q-adic expansions x “ x1q
´1`x2q

´2`

¨ ¨ ¨ and y “ y1q
´1 ` y2q

´2 ` ¨ ¨ ¨ , where

φwal,βpx, yq “

$

&

%

µpβq if x “ y,

µpβq ´ qpi0´1qp1´βqpµpβq ` 1q
if xi0 ‰ yi0 and
xi “ yi for all i ă i0

and

µpβq “
qβpq ´ 1q

qβ ´ q
.

(cf. [6, p. 156])

Proof. Continuing with Equation (7) and inserting the identities from Lemma
2.18 and Lemma 2.19 yields

Kwal,β,γpx, yq “ 1` γ
8
ÿ

a“0

q´βa
qa`1´1
ÿ

k“qa

walkpxa yq “ 1` γ
8
ÿ

a“0

q´βaDapx, yq

“ 1` γφwal,βpx, yq
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Having proven this very useful formula for the reproducing kernel Kwal,β,γ

we now move on to the general s-dimensional case.

2.4.2 The s-dimensional case

As it has already been mentioned beforehand, the weighted s-dimensional
Hilbert space Hwal,s,β,γ will simply be defined by the s-fold tensor product
of the corresponding one-dimensional spaces. However, it is not clear from
the outset that this actually leaves us with a reproducing kernel Hilbert space.

We start off by finding an appropriate inner product. This will be done
in a more general way within the next lemma.

Lemma 2.21. Let H1 and H2 be two pre-Hilbert spaces of functions
defined on a set X, with the inner products x¨, ¨y1 and x¨, ¨y2 respectively.
We denote their tensor product by

H :“ H1 bH2.

For

fpx1, x2q “
n
ÿ

k“1

f
pkq
1 px1q f

pkq
2 px2q P H

and

gpx1, x2q “
m
ÿ

l“1

g
plq
1 px1q g

plq
2 px2q P H ,

where n,m P N, xi P X and f
pkq
i , g

plq
i P Hi for 1 ď k ď n, 1 ď l ď m and

i “ 1, 2, we define

xf, gy :“
n
ÿ

k“1

m
ÿ

l“1

xf
pkq
1 , g

plq
1 y1 xf

pkq
2 , g

plq
2 y2.

Then x¨, ¨y is an inner product on H , turning it into a pre-Hilbert space.

(cf. [1, p. 358])

Proof. (Taken from [1, pp. 358f.].)

As f as well as g may admit of various representations of the above kind



26 2.4 The weighted Hilbert space of generalized Walsh series

we need to show that xf, gy is invariant under different representations of f
and g. For the function f this can be seen by

xf, gy “
n
ÿ

k“1

m
ÿ

l“1

xf
pkq
1 , g

plq
1 y1 xf

pkq
2 , g

plq
2 y2

“

n
ÿ

k“1

m
ÿ

l“1

@

xf
pkq
1 f

pkq
2 , g

plq
1 y1, g

plq
2

D

2

“

m
ÿ

l“1

@

xf, g
plq
1 y1, g

plq
2

D

2
.

In an analogous way we can prove that xf, gy is well-defined with respect to
the representation of g.

Obviously, x¨, ¨y is symmetric and linear in the first argument. Thus, it
merely remains to show positive definiteness. For this reason we choose an
arbitrary representation of f P H of the form

fpx1, x2q “
n
ÿ

k“1

f
pkq
1 px1q f

pkq
2 px2q, where f

pkq
1 PH1, f

pkq
2 PH2 and x1, x2PX.

As a first step, we orthonormalize the sequences pf
pkq
1 q1ďkďn and pf

pkq
2 q1ďkďn

in the respective spaces and denote the arising sequences by pf̃
pkq
1 q1ďkďn1 and

pf̃
pkq
2 q1ďkďn2 respectively. Secondly, we rewrite f as

fpx1, x2q “
n1
ÿ

k“1

n2
ÿ

l“1

ak,lf̃
pkq
1 px1q f̃

plq
2 px2q

with suitable coefficients ak,l. Hence, we may simplify as follows:

xf, fy “

C

n1
ÿ

k“1

n2
ÿ

l“1

ak,lf̃
pkq
1 f̃

plq
2 ,

n1
ÿ

i“1

n2
ÿ

j“1

ai,j f̃
piq
1 f̃

pjq
2

G

“

n1
ÿ

k“1

n2
ÿ

l“1

n1
ÿ

i“1

n2
ÿ

j“1

ak,lai,j

A

f̃
pkq
1 , f̃

piq
1

E

1

A

f̃
plq
2 , f̃

pjq
2

E

2

“

n1
ÿ

k“1

n2
ÿ

l“1

n1
ÿ

i“1

n2
ÿ

j“1

ak,lai,jδk,iδl,j

“

n1
ÿ

k“1

n2
ÿ

l“1

|ak,l|
2

ě 0,
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where δij denotes the so-called Kronecker delta, i.e. for i, j P N we have

δij “

"

1 if i “ j,
0 if i ‰ j.

Furthermore, if we assume that xf, fy “ 0, this immediately implies ak,l “
0 for all 1 ď k ď n1 and 1 ď l ď n2 and therefore fpx1, x2q “ 0 and the
result follows.

In what follows let γ “ pγjq1ďjďs be a sequence of positive and non-
increasing real numbers. Applying the above lemma inductively on the s-fold
tensor product of the one-dimensional Hilbert spaces Hwal,β,γj , 1 ď j ď s,
i.e.

Hwal,s,β,γ :“
s
â

j“1

Hwal,β,γj “ Hwal,β,γ1 b ¨ ¨ ¨ bHwal,β,γs ,

we get that Hwal,s,β,γ is a pre-Hilbert space.

For f “
řn
k“1

śs
j“1 f

pkq
j P Hwal,s,β,γ and g “

řm
l“1

śs
j“1 g

plq
j P Hwal,s,β,γ ,

where f
pkq
j , g

plq
j P Hwal,β,γj , we can rewrite the inner product resulting from

Lemma 2.21, we denote it by xf, gywal,s,γ , in the following way:

xf, gywal,s,γ “
n
ÿ

k“1

m
ÿ

l“1

s
ź

j“1

xf
pkq
j , g

plq
j ywal,γj (11)

“

n
ÿ

k“1

m
ÿ

l“1

s
ź

j“1

˜

8
ÿ

i“0

rpβ, γj, iq
´1f̂

pkq
j piqĝ

plq
j piq

¸

,

where f̂
pkq
j piq and ĝ

pkq
j piq denote the ith Walsh-Fourier coefficient of the func-

tions f
pkq
j and g

pkq
j respectively.

We use the same notation as in [5, p. 157], namely

rpβ,γ,kq :“
s
ź

j“1

rpβ, γj, kjq

and

f̂pkq :“
s
ź

j“1

f̂jpkjq

for k “ pk1, . . . , ksq P Ns
0 and where f̂jpkjq stands for the kjth Walsh-Fourier

coefficient of a function fj P Hwal,β,γj . This allows us to simplify further and
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we arrive at the same inner product as given in the aforementioned paper:

xf, gywal,s,γ “
n
ÿ

k“1

m
ÿ

l“1

ÿ

iPNs0

rpβ,γ, iq´1f̂ pkqpiqĝplqpiq

“
ÿ

iPNs0

rpβ,γ, iq´1f̂piqĝpiq.

By the same arguments as we had in Remark 2.13 we can uniquely iden-
tify any function f P Hwal,s,β,γ by its sequence of Walsh-Fourier coefficients

pf̂pkqqkPNs0 . Thus, we can exploit Lemma 2.14 again to find that Hwal,s,β,γ is
complete and is hence forming a Hilbert space, which allows us to make the
following definition.

Definition 2.22. Let s P N and γ “ pγ1, . . . , γsq be a sequence of positive
and non-increasing real numbers. Then we define the weighted Hilbert
space Hwal,s,β,γ as

Hwal,s,β,γ :“
s
â

j“1

Hwal,β,γj “ Hwal,β,γ1 b ¨ ¨ ¨ bHwal,β,γs .

Furthermore, for k “ pk1, . . . , ksq P Ns
0 we set

rpβ,γ,kq :“
s
ź

j“1

rpβ, γj, kjq

and

f̂pkq :“
s
ź

j“1

f̂jpkjq,

where f̂jpkjq denotes the kjth Walsh-Fourier coefficient of fj P Hwal,β,γj ,
and define the inner product on Hwal,s,β,γ by

xf, gywal,s,γ :“
ÿ

kPNs0

rpβ,γ,kq´1 f̂pkqĝpkq.

(Adapted from [17, pp. 411f.].)

The next step is to find a reproducing kernel for Hwal,s,β,γ .
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Theorem 2.23. The function

Kwal,s,β,γpx,yq :“
s
ź

j“1

Kwal,β,γjpxj, yjq,

where x, y P r0, 1qs, x “ px1, . . . , xsq and y “ py1, . . . , ysq, is a reproduc-
ing kernel for Hwal,s,β,γ.

(cf. [17, p. 411])

Proof. By definition, Hwal,s,β,γ comprises only functions of the form f “
řn
k“1

śs
j“1 f

pkq
j with f

pkq
j P Hwal,β,γj , 1 ď j ď s and n P N. So, clearly,

Kwal,s,β,γp¨,yq P Hwal,s,β,γ for any y P r0, 1qs.

Furthermore, for all functions f P Hwal,s,β,γ , which are certainly of the
above type, and for all y “ py1, . . . , ysq in r0, 1qs we have

fpyq “
n
ÿ

k“1

s
ź

j“1

f
pkq
j pyjq

“

n
ÿ

k“1

s
ź

j“1

xf
pkq
j , Kwal,β,γjp¨j, yjqywal,γj

p11q
“ xf,Kwal,s,β,γp¨,yqywal,s,γ ,

sinceKwal,β,γj is the reproducing kernel of the one-dimensional space Hwal,β,γj ,
1 ď j ď s.

Remark 2.24. The reproducing kernel from the above theorem can be writ-
ten in several ways, based on Theorem 2.20, as the equations below show
(cf. [17, p. 411]):
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Kwal,s,β,γpx,yq “
s
ź

j“1

Kwal,β,γjpxj, yjq

“

s
ź

j“1

p1` γjφwal,βpxj, yjqq (12)

“

s
ź

j“1

8
ÿ

kj“0

rpβ, γj, kjqwalkjpxjqwalkjpyjq

“
ÿ

kPNs0

rpβ,γ,kqwalkpxqwalkpyq. (13)

So, by (12) we see that Kwal,s,β,γ , too, can be computed rather easily (cf. [6,
p. 157]) and Equation (13) indicates that we have an analogous form of the
reproducing kernel as we had in the one-dimensional case (see Theorem 2.17).
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3 Digital pt,m, sq-nets

3.1 Motivation and general construction

In order to proceed towards multivariate integration in the weighted Hilbert
space Hwal,s,β,γ as introduced in Section 2.4, we move on with special types of
point sets, namely digital pt,m, sq-nets over the finite field Fq. For a survey
on this topic see [5, Chapter 4.4], for instance. For this choice of point sets
we will show error estimations for QMC-rules in the next section. Let us
begin by defining the term elementary interval.

Definition 3.1 (Elementary interval). Let s, k P N. Additionally, let b ě
2 be an integer. Then we call an interval E an s-dimensional elementary
interval in base b of order k iff there exist non-negative integers d1, . . . , ds
and A1, . . . , As P N0 with

řs
i“1 di “ k and Ai ă bdi for all 1 ď i ď s such

that

E “
s
ź

i“1

„

Ai
bdi
,
Ai ` 1

bdi

˙

.

(cf. [5, Definition 3.8])

The notion of introducing (digital) pt,m, sq-nets is to find a finite point
set P which best represents an elementary interval E. By this we mean that
the relative number of points in P X E equals the Lebesgue measure of E,
i.e. λpEq, or, in short:

ˇ

ˇ

ˇ

ˇ

#pP X Eq
#P

´ λpEq

ˇ

ˇ

ˇ

ˇ

“ 0, (14)

where #X denotes the cardinality of a finite set X (cf. [5, Definition 4.2]).
Noticing that λpEq “ b´d1´¨¨¨´ds leads to the following definition of pt,m, sq-
nets, which was first given by H. Niederreiter in [13], see also [14].

Definition 3.2 (pt,m, sq-net). Let t,m, s be integers with s,m ě 1,
0 ď t ď m and b ě 2. A point set P Ď r0, 1qs consisting of exactly bm

points is called a pt,m, sq-net in base b iff every elementary interval E of
order m´ t contains exactly bt points of P , i.e. #pP X Eq “ bt.

(cf. [13, Definition 2.2])
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Note that, in this setting, we have

ˇ

ˇ

ˇ

ˇ

#pP X Eq
#P

´ λpEq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

bt

bm
´ b´pm´tq

ˇ

ˇ

ˇ

ˇ

“ 0,

(cf. [13, Remark 2.3]), and thus pt,m, sq-nets fulfill the desired property (14).

For the existence of pt,m, sq-nets for certain choices of the parameters
t,m and s as well as for general results on the theory of pt,m, sq-nets see
[5, Chapter 4.2] or [13], for example. Here, we only mention two important
properties.

Remark 3.3.

• Any point set with bm elements, b ě 2, is at least an pm,m, sq-net in
base b (cf. [5, Remark 4.9, item 3]) and

• if the so-called quality parameter t of a pt,m, sq-net is small, then it
has good distribution properties, as can be seen for example in [5,
Chapter 5.5.1].

For practical applications, pt,m, sq-nets in base b ě 2 are usually obtained
by constructing so-called digital pt,m, sq-nets (cf. [4, p. 1898]). As our
working space is still Hwal,s,β,γ we restrict ourselves to the case, where b “
q “ pr, with p prime and r P N. Also, we need to recall the definition of ϕ1,
which is a fixed bijection from Zq onto Fq with ϕ1p0q “ 0, where 0 denotes
the neutral element in the corresponding addiditve group (see the beginning
of Section 2.2).

Definition 3.4 (Digital pt,m, sq-net). Let q and ϕ1 be defined as above
and let s,m P N. Furthermore, let C1, . . . , Cs be mˆm matrices over Fq.
For every integer 0 ď h ă qm we denote by

h “ h1 ` h2q ` ¨ ¨ ¨ ` hmq
m´1

its q-adic expansion and identify the vector h P Fmq with

h “ pϕ1ph1q, . . . , ϕ1phmqq .

We construct a point set P consisting of exactly qm points as follows. For
1 ď j ď s we set



Digital pt,m, sq-nets 33

1.

Cjh
J
“:

´

y
p1q
j phq, . . . , y

pmq
j phq

¯J

P
`

Fmq
˘J

and

2.

x
pjq
h :“

ϕ´11 py
p1q
j phqq

q
` ¨ ¨ ¨ `

ϕ´11 py
pmq
j phqq

qm
.

For a fixed 0 ď h ă qm we assemble the above quantities into a vector

xh “
´

x
p1q
h , . . . , x

psq
h

¯

and define the point set P by

P :“ txh : 0 ď h ă qmu .

At this point it should be added that, as we do not put any regularity
constraints on the matrices C1, . . . , Cs, we allow a point to appear more
than once in P . So the cardinality of such a point set is always qm.

Now, if there exists an integer parameter 0 ď t ď m such that P is
a pt,m, sq-net in base q, then we call P a digital pt,m, sq-net pover Fqq
with generating matrices Cj, 1 ď j ď s. Often, we will simply refer to
such as digital nets, if it is clear or not of importance which parameters
t, m and s are taken into consideration.

(cf. [17, Definition 2])

Since the determination of the parameter t is not of concern for this thesis,
we refer to [5, Theorem 4.52] for the proof of the following lemma.

Lemma 3.5. Let P be a point set constructed according to the above
principle, using the generating matrices C1, . . . , Cs P Fm̂ m

q . Then, P is
a pm ´ %,m, sq-net in base q, where % “ %pC1, . . . , Csq is defined as the
largest integer for which it holds that for any choice of d1, . . . , ds P N0

with d1 ` ¨ ¨ ¨ ` ds “ % we have that
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• the first d1 row vectors of C1 together with

• the first d2 row vectors of C2 together with

• . . .

• the first ds row vectors of Cs

are linearly independent over Fq.

3.2 The algebraic structure of digital nets

The main advantage of using the concept of digital nets, apart from its good
distribution properties (see Remark 3.3 or [5, Chapter 5.5.1], for instance),
lies in the fact that, together with the operation ‘ (see Definition 2.4), digital
nets form an abelian group, as the lemma below shows.

Theorem 3.6. Let P “ tx0, . . . ,xqm´1u be a digital pt,m, sq-net over Fq
with generating matrices C1, . . . , Cs. Then pP ,‘q is an abelian group.

(cf. [5, Lemma 4.72])

Proof. Apparently, due to the definition of ‘, associativity and commutativ-
ity hold.

Let 0 ď k, l ă qm be integers. Then, using the same notation as in
Definition 3.4, the i-th component of the vector xk P P , i.e. x

piq
k , is given by

x
piq
k “

ϕ´11 py
p1q
i pkqq

q
` ¨ ¨ ¨ `

ϕ´11 py
pmq
i pkqq

qm
, 1 ď i ď s.

Now, we observe that

pxk ‘ xlq
piq
“

m
ÿ

h“1

ai,hq
´h,

where

ai,h “ ϕ´11

´

ϕ1 ˝ ϕ
´1
1 py

phq
i pkqq ` ϕ1 ˝ ϕ

´1
1 py

phq
i plqq

¯

“ ϕ´11

´

y
phq
i pkq ` y

phq
i plq

¯

.
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In the next step we notice that by the definition of digital nets we have

Cipk` lqJ “ Cik
J
` Cil

J
“

¨

˚

˝

y
p1q
i pkq ` y

p1q
i plq

...

y
pmq
i pkq ` y

pmq
i plq

˛

‹

‚

P
`

Fmq
˘J

for all 1 ď i ď s, where k “ pϕ1pk1q, . . . , ϕ1pkmqq and l “ pϕ1pl1q, . . . , ϕ1plmqq,
k “ k1 ` k2q ` ¨ ¨ ¨ kmq

m´1 and l “ l1 ` l2q ` ¨ ¨ ¨ lmq
m´1. Thus, pxk ‘ xlq

piq is
generated by Cipk` lqJ.

Since Fmq comprises exactly qm elements – which at the same time equals
the number of points in the digital net – and as we can get any of those
elements through k` l for suitable k, l P Fmq , there is a one to one correspon-
dence between xk ‘ xl and the vectors Cipk ` lqJ, 1 ď i ď s. This already
proves that pP ,‘q is a semi-group.

The neutral element is given by the zero vector 0 P r0, 1qs which is cer-
tainly contained in P , since it is obtained by applying the generating matri-
ces to the zero vector in Fmq . For the inverse of an element xk P P , where
0 ď k ă qm, we simply need to find the inverse of k in Fmq , which is naturally
given by ak. Consequently, all group axioms are fulfilled.

Exploiting the group structure of digital nets over Fq allows us to prove
two very interesting properties.

Theorem 3.7. Let P be a digital pt,m, sq-net over Fq with generating
matrices C1, . . . , Cs. Then the following holds:

(i) If the points of P are pairwise different then pP ,‘q is isomorphic
to

`

Fmq ,`
˘

.

(ii) For any h P Ns
0 the function walh is a character on pP ,‘q.

(cf. [5, Lemma 4.72] for (i) and [6, p. 159] for the prime case of (ii))

Proof.

(i) As it was done in the proof of [5, Lemma 4.72] we define the mapping

Ψ: Fmq ÝÑ P
k ÞÝÑ xk
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where k is given by k “ k1`k2q`¨ ¨ ¨`kmq
m´1 and k “ pϕ1pk1q, . . . , ϕ1pkmqq.

From this definition we immediately get that Ψ is well defined.

Moreover, in the proof of Theorem 3.6 we have learned that for any k,
l P Fmq we can generate the point xk ‘ xl by applying the generating
matrices to k` l. Therefore we have

Ψpkq ‘Ψplq “ xk ‘ xl “ Ψpk` lq.

So, Ψ is a homomorphism.

To prove injectivity we assume that Ψpkq “ Ψplq, for some k, l P Fmq .
This means that xk “ xl, where the q-adic digits of k and l are deter-
mined by ϕ´11 applied to the entries of k and l respectively. Since the
points of P are mutually different this implies k “ l and consequently
k=l.

Additionally, both Fmq and P comprise exactly qm elements and hence
we get that Ψ is bijective.

(ii) Just as in [6, p. 159] we fix h P Ns
0. Furthermore, let P “ tx0, . . . ,xqm´1u

be a digital net over Fq. Then walh is a character on pP ,‘q if and only
if

walhpxk ‘ xlq “ walhpxkqwalhpxlq

for any xk, xl P P . This is true due to Proposition 2.10.(i).

At this point, the reader is highly advised to go through the paragraphs
preceding Definition 2.3, as the definitions made therein are essential to the
proof of the next lemma.

Lemma 3.8. Let P “ tx0, . . . ,xqm´1u be a digital pt,m, sq-net over Fmq
generated by the mˆm matrices C1, . . . , Cs P Fmˆmq , s P N. Additionally,
let k “ pk1, . . . , ksq be a vector whose entries are non-negative integers,
all of which are strictly smaller than qm. Then

qm´1
ÿ

h“0

walkpxhq “

"

qm if CJ1 ϕpk1q ` ¨ ¨ ¨ ` C
J
s ϕpksq “ 0,

0 else,
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where 0 denotes the zero vector in Fmq and ϕ : Zqm Ñ
`

Fmq
˘J

is an
extension of ϕ1 such that for k “

řm
i“1 κiq

i´1 we have

ϕpkq “ pϕ1pκ1q, . . . , ϕ1pκmqq
J .

(cf. [16, Lemma 2.5])

Proof. At first, we adopt the preparatory paragraphs from [16, pp. 389f.].
Within this proof we will look at Fq as a vector space over Zp. This means
we consider Fq “ Zprθs so that B “ t1, θ, . . . , θr´1u is a basis for Fq. Cer-
tainly, any x P Fq can then (uniquely) be written as x “

řr
i“1 xiθ

i´1 with
xi P Zp for i “ 1, . . . , r.

For such an x we know that the isomorphism ψ : Fq Ñ Zrp is given by
ψpxq “ px1, . . . , xrq. We now extend ψ to m-dimensional vectors, m P N, i.e.
ψ : Fmq Ñ Zrmp . Analogous to the original case we define η “ ψ ˝ ϕ. In order
to provide the reader with a better overview we summarize these relations in
a commutative diagramm.

Zqm
ϕ //

η

  

Fmq

ψ

��
Zrmp

Figure 2: Commutative diagram of extensions, (cf. [16, p. 389]).

In the following paragraphs we will define a mapping Ψ of linear trans-
formations over Fq into the linear transformations over Zp. For this reason
we represent θr as a linear combination of the basis elements, i.e.

θr “ θ1 ` θ2θ ` ¨ ¨ ¨ ` θrθ
r´1, θi P Zp

and define the matrix

Θ :“

¨

˚

˚

˚

˚

˚

˝

0 0 0 ¨ ¨ ¨ 0 θ1
1 0 0 ¨ ¨ ¨ 0 θ2
0 1 0 ¨ ¨ ¨ 0 θ3
...

...
...

...
...

0 0 0 . . . 1 θr

˛

‹

‹

‹

‹

‹

‚

.
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Applying Θ to ψpxq, where x has the basis representation x “
řr
i“1 xiθ

i´1,
yields

Θ

¨

˚

˝

x1
...
xr

˛

‹

‚

“

¨

˚

˚

˚

˚

˚

˝

θ1xr
x1 ` θ2xr
x2 ` θ3xr

...
xr´1 ` θrxr

˛

‹

‹

‹

‹

‹

‚

.

If we now consider the linear transformation x ÞÑ θx we get

θx “
r
ÿ

i“1

xiθ
i
“

r´1
ÿ

i“1

xiθ
i
` xrθ

r
“

r´1
ÿ

i“1

xiθ
i
` xrpθ1 ` θ2θ ` ¨ ¨ ¨ ` θrθ

r´1
q

“ θ1xr ` px1 ` θ2xrqθ ` ¨ ¨ ¨ ` pxr´1 ` θrxrqθ
r´1.

Comparing the results we have shown the identity

Θψpxq “ ψpθxq (15)

for all x P Fq.

For an arbitrary α P Fq with the representation α “
řr
i“1 aiθ

i´1 with
respect to the basis B we define the map Ψ by the matrix

Ψpαq “
r
ÿ

i“1

aiΘ
i´1.

If we now exploit (15) and the fact that ψ is an isomorphism we can easily
show that

Ψpαqψpxq “
r
ÿ

i“1

aiΘ
i´1ψpxq “

r
ÿ

i“1

aiψ
`

θi´1x
˘

“ ψ

˜

r
ÿ

i“1

aiθ
i´1x

¸

“ ψpαxq (16)

holds for all x P Fq.

The next step is to extend Ψ to matrices. This can be achieved by
applying Ψ to the entries of the respective matrix and subsequently letting
the hereby obtained matrices run together. With some abuse of notation,
this can be formulated as follows:

ΨpAq :“ pΨpai,jqqi,j P Z
rm1ˆrm2
p for A “ pai,jqi,j P F

m1ˆm2
q ,
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where m1, m2 P N. Again we obtain

ΨpAqψpxq “ ψpAxq, (17)

with x “ px1, . . . , xm2q
J P

`

Fm2
q

˘J
, as a consequence of (16) and the homo-

morphism property of ψ.

We now enter the actual proof of [16, Lemma 2.5]. To this end let
k “ pk1, . . . , ksq P t0, . . . , q

m ´ 1us and let the entry kj, 1 ď j ď s, have
the q-adic expansion kj “ κj,1 ` κj,2q ` ¨ ¨ ¨ ` κj,mq

m´1. The ith component

of the point xh P P shall be denoted by x
piq
h , 1 ď i ď s and 0 ď h ă qm.

From the construction scheme of digital nets we know that

x
piq
h “

ϕ´11 py
p1q
i phqq

q
` ¨ ¨ ¨ `

ϕ´11 py
pmq
i phqq

qm
,

where y
p1q
i phq, . . . , y

pmq
i phq are as stated in Definition 3.4. Therefore, for any

1 ď l ď m, the lth q-adic digit of x
piq
h , we denote it by x

piq
h,l, is given by

x
piq
h,l “ ϕ´11 py

plq
i phqq “ ϕ´11 pc

J
i,l ¨ ϕphqq,

where ci,l is the lth row vector of the generating matrix Ci. Hence we have

ηpx
pjq
h,lq “ ψ ˝ ϕ1 ˝ ϕ

´1
1 pc

J
j,l ¨ ϕphqq “ ψpcJj,l ¨ ϕphqq,

1 ď j ď s. With these presettings we can proceed as follows:

qm´1
ÿ

h“0

walkpxhq “
qm´1
ÿ

h“0

s
ź

j“1

m
ź

l“1

exp

ˆ

2πi

p
ηpκj,lq ¨ ηpx

pjq
h,lq

˙

“

qm´1
ÿ

h“0

s
ź

j“1

m
ź

l“1

exp

ˆ

2πi

p
ηpκj,lq ¨ ψ

`

cJj,l ¨ ϕphq
˘

˙

.

Since ϕ is bijective and using the identity given in (17) we obtain further

qm´1
ÿ

h“0

walkpxhq “
ÿ

hPFmq

s
ź

j“1

m
ź

l“1

exp

ˆ

2πi

p
ηpκj,lq ¨ ψ

`

cJj,l ¨ h
˘

˙

“
ÿ

aPZrmp

s
ź

j“1

m
ź

l“1

exp

ˆ

2πi

p
ηpκj,lq ¨Ψpcj,lqa

˙

“
ÿ

aPZrmp

exp

˜

2πi

p
a ¨

˜

s
ÿ

j“1

m
ÿ

l“1

Ψpcj,lq
Jηpκj,lq

¸¸

.
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Now, observe that
m
ÿ

l“1

Ψpcj,lq
Jηpκj,lq “

`

ΨpcJj,1q, . . . ,Ψpc
J
j,mq

˘

pηpκj,1q, . . . , ηpκj,mqq
J
“ ΨpCJj qηpkjq

and therefore we arrive at

ÿ

aPZrmp

exp

˜

2πi

p
a ¨

˜

s
ÿ

j“1

ΨpCJj qηpkjq

¸¸

.

Abbreviating the lth component of
řs
j“1 ΨpCJj qηpkjq as %l and further sim-

plifications yield

qm´1
ÿ

h“0

walkpxhq “
ÿ

pa1,...,armqPZrmp

exp

ˆ

2πi

p
a1%1

˙

¨ ¨ ¨ exp

ˆ

2πi

p
arm%rm

˙

“

rm
ź

l“1

˜

p´1
ÿ

a“0

exp

ˆ

2πi

p
a%l

˙

¸

.

In case there exists an index 1 ď l0 ď rm such that %l0 ‰ 0, then

p´1
ÿ

a“0

exp

ˆ

2πi

p
a%l0

˙

“ 0,

due to a geometric sum argument and therefore the whole product equals to
zero. Clearly, if we have %l “ 0 for every 1 ď l ď rm, we obtain

qm´1
ÿ

h“0

walkpxhq “
rm
ź

l“1

˜

p´1
ÿ

a“0

exp

ˆ

2πi

p
a%l

˙

¸

“ prm “ qm.

Taking advantage of the fact that ψ is an isomorphism in addition to using
(17) and η “ ψ ˝ ϕ the condition %l “ 0 holds for all 1 ď l ď rm if and only
if

0 “
s
ÿ

j“1

ΨpCJj qηpkjq “ ψ

˜

s
ÿ

j“1

CJj ϕpkjq

¸

,

where 0 denotes the zero element in Zrmp .

Note that, if ψpxq “ 0, then x has to be zero, as ψ is an isomorphism
and therefore the above is true if and only if

CJ1 ϕpk1q ` ¨ ¨ ¨ ` C
J
s ϕpksq “ 0,

which proves the statement.

By having proven this lemma we have finished all preparatory work nec-
essary to deal with the integration problem in the Hilbert space Hwal,s,β,γ .
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4 Multivariate integration in the Hilbert space

Hwal,s,β,γ

We will now focus on the approximation of integrals over the s-dimensional
unit cube by applying QMC-rules in the Hilbert space Hwal,s,β,γ . Apart
from proving general bounds for the so-called worst-case error we will also
use results of the previous chapters to investigate the application of digital
pt,m, sq-nets as sample points. Additionally, some effort will be put into
the determination of both necessary and sufficient conditions under which
applying a QMC-rule in Hwal,s,β,γ is tractable. That is, whether the number
of sample points required to attain a certain error bound is (at most) poly-
nomially dependent on the dimension s and the error itself.

To mathematically formalize the problem we need to introduce two func-
tionals. Let f be a function in Hwal,s,β,γ . Then, by Ispfq we denote

Ispfq :“

ż

r0,1qs
fpxq dx.

For the approximation of Ispfq we use a QMC-rule. This means, we deter-
ministically choose sample points x0, . . . ,xn´1 P r0, 1q

s and compute

Qn,spfq :“
1

n

n´1
ÿ

h“0

fpxhq,

(cf. [6, p. 161]).

First off, we will prove a very basic, but yet essential property of these
functionals.

Lemma 4.1. Let β ą 1. Then the functionals Ispfq and Qn,spfq, as
defined above, are linear and bounded for f P Hwal,s,β,γ.

Proof. Clearly, both Is and Qn,s are linear. For the proof of boundedness

we consider an arbitrary fpxq “
ř

kPNs0
f̂pkqwalkpxq P Hwal,s,β,γ . Due to

Proposition 2.2.(i) the result follows immediately for Qn,s.
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Now we consider Ispfq. We have

|Ispfq|
(RK2)

ď

ż

r0,1qs
|xf,Kwal,s,β,γp¨,yqywal,s,γ | dy

ď }f}wal,s,γ

ż

r0,1qs
}Kwal,s,β,γp¨,yq}wal,s,γ dy.

From the proof of Theorem 2.17 it then follows that

ż

r0,1qs
}Kwal,s,β,γp¨,yq}wal,s,γ dy ď

ż

r0,1qs

g

f

f

f

e

s
ź

j“1

¨

˝

8
ÿ

kj“0

rpβ, γj, kjq

˛

‚dy

Lemma 2.16
“

g

f

f

e

s
ź

j“1

p1` γjµpβqq ă 8

for β ą 1 and hence we are finished.

Apart from the fact that we need the boundedness of Is in order to rea-
sonably consider the integration problem in Hwal,s,β,γ , it allows us to do the
following (cf. [5, Example 2.9]):

ż

r0,1qs
xf,Kwal,s,β,γp¨,yqywal,s,γ dy “

B

f,

ż

r0,1qs
Kwal,s,β,γp¨,yq dy

F

wal,s,γ

,

(18)
f P Hwal,s,β,γ , as follows from the next lemma.

Lemma 4.2. Let H be a reproducing kernel Hilbert space of functions
with reproducing kernel K and inner product x¨, ¨y. Furthermore, let T be
a linear and bounded functional on H . Then,

T pxfpxq, Kpx, yqyxq “
A

fpxq, T pKpy, xqq
E

x
,

where, in the above expression, we make the convention that T is applied
to a function in y and that the index of the inner product indicates the
variable with respect to which the inner product is taken.

(cf. [5, pp. 25f.])
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Proof. (Taken from [5, pp. 25f.])

Since T is linear and bounded by assumption it follows from Riesz’ rep-
resentation theorem that there exists exactly one function R P H sucht that
for all f P H we have that

T pfpyqq “ xfpyq, Rpyqyy.

Moreover, for all x in the domain of R

Rpxq
(RK2)
“ xRpyq, Kpy, xqyy “ xKpy, xq, Rpyqyy “ T pKpy, xqq

holds, as Kpy, xq P H for any fixed x. Hence,

T pxfpxq, Kpx, yqyxq
(RK2)
“ T pfpyqq “ xfpxq, Rpxqyx “

A

fpxq, T pKpy, xqq
E

x
.

The equation given in (18) now follows from the symmetry of reproducing
kernels (see Proposition 2.2). By exploiting this result we obtain the following
identity:

Lemma 4.3. The representer of the functional Is as defined above in the
Hilbert space Hwal,s,β,γ is 1, i.e. for any f P Hwal,s,β,γ

Ispfq “ xf, 1ywal,s,γ

holds.

(cf. [6, p. 161])

Proof. It is easy to see that the Walsh series of Kwal,s,β,γpx,yq is uniformly
convergent for every fixed x P r0, 1qs:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

kPNs0

rpβ,γ,kqwalkpxqwalkpyq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Lemma 2.16
ď

s
ź

j“1

p1` γjµpβqq ă 8

for β ą 1. Therefore we obtain
ż

r0,1qs
Kwal,s,β,γpx,yq dy “

ÿ

kPNs0

rpβ,γ,kqwalkpxq

ż

r0,1qs
walkpyq dy

Prop. 2.10
“ 1,

as a consequence of the theorem of dominated convergence. We insert this
identity into (18) and together with (RK2) the result follows.
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4.1 Error analysis for arbitrary QMC-rules

In the following the definitions of several quality parameters which are of
essential concern in this thesis are given. We will now briefly describe two of
them. Heuristically speaking, the worst-case error gives the largest possible
error which can be attained by using a specific QMC-rule for integration,
independent of which function in the unit ball of Hwal,s,β,γ is to be approxi-
mated. Whereas QMC-tractability is used to examine if there exists a QMC-
rule for which one can link the size of the point set necessary to stay below
a certain error bound to a polynomial dependency on the dimension, viewed
at as a property of Hwal,s,β,γ .

Definition 4.4 (Worst-case error). Let Is and Qn,s be as defined in
the beginning of this section. The worst-case error for integration in
Hwal,s,β,γ is defined by

en,s “ epQn,sq :“ sup
fPHwal,s,β,γ , }f}wal,s,γď1

|Ispfq ´Qn,spfq|

for n P N. As a reference value we introduce the initial error by

e0,s :“ sup
fPHwal,s,β,γ , }f}wal,s,γď1

|Ispfq| .

(cf. [6, Definition 5])

Since, in practice, we can only apply a finite number of sample points to
a QMC-algorithm, we are also interested in how many points are necessary
to attain a certain error bound.

Definition 4.5 (Information complexity). For s P N and real ε ą 0 we
define the information complexity nminpε, sq by

nminpε, sq :“ min tn P N0 : DQn,s such that epQn,sq ď ε e0,su .

(cf. [6, Definition 5])

From Lemma 4.3 it immediately follows that

|Ispfq| “ |xf, 1ywal,s,γ | ď }f}wal,s,γ .
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Therefore we have

e0,s “ sup
fPHwal,s,β,γ , }f}wal,s,γď1

|xf, 1ywal,s,γ | “ }1}
2
wal,s,γ “ 1

and hence

nminpε, sq “ min tn P N0 : DQn,s such that epQn,sq ď εu ,

where s P N and ε ą 0, (cf. [6, p. 162]). Thus, the information com-
plexity gives the minimal number of function values needed to obtain an
ε-approximation of an integral with a QMC-algorithm.

Often, one can obtain good asymptotic bounds for the worst-case error.
On the basis of these, however, it is not obvious how many sample points are
needed to make use of this asymptotic behavior, especially when it comes to
QMC-integration in higher dimensions, that is, for large s. This problem is
dealt with in the so-called tractability theory. Tractability hereby means to
have control over the dependency on the dimension and excludes those cases
for which nminpε, sq grows exponentially in s and ε´1.

Definition 4.6 (QMC-tractability). Multivariate integration in
Hwal,s,β,γ is said to be QMC-tractable iff

Da, b, c P R, a, b, c ě 0: @s P N @ε P p0, 1q : nminpε, sq ď csbε´a. (19)

The infima of a and b such that the above inequality holds are called ε-
and s-exponents of QMC-tractability.

Furthermore, if (19) holds with b “ 0, i.e. nmin does not grow by
increasing the dimension s, we speak of strong QMC-tractability. In
this case, the infimum of a is referred to as the ε-exponent of strong
QMC-tractability.

(cf. [6, Definition 5])

In order to obtain some information on the worst-case error the next step
will be to simplify it. For this reason we consider a QMC-rule Qn,s with an
arbitrary set of sample points P “ tx0, . . . ,xn´1u Ď r0, 1q

s . Exploiting the
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reproducing property of the reproducing kernel Kwal,s,β,γ of Hwal,s,β,γ and
inserting the identity from Lemma 4.3 yields

Ispfq ´Qn,spfq “ xf, 1ywal,s,γ ´
1

n

n´1
ÿ

h“0

xf,Kwal,s,β,γp¨,xhqywal,s,γ

“ xf, 1ywal,s,γ ´

C

f,
1

n

n´1
ÿ

h“0

Kwal,s,β,γp¨,xhq

G

wal,s,γ

“

C

f, 1´
1

n

n´1
ÿ

h“0

Kwal,s,β,γp¨,xhq

G

wal,s,γ

for any f P Hwal,s,β,γ , (cf. [6, p. 162]).

The main advantage of using the theory of reproducing kernel Hilbert
spaces lies in the fact that we can explicitely find a function which is hardest
to integrate in Hwal,s,β,γ (cf. [5, p. 28]). This is indicated in the next theorem.

Theorem 4.7. The worst-case error for integration in the Hilbert space
Hwal,s,β,γ with reproducing kernel Kwal,s,β,γ using an arbitrary point set
P “ tx0, . . . ,xn´1u Ď r0, 1q

s is given by

epQn,sq “

›

›

›

›

›

1´
1

n

n´1
ÿ

h“0

Kwal,s,β,γp¨,xhq

›

›

›

›

›

wal,s,γ

.

(cf. [6, p. 162])

Proof. (Adapted from [5, p. 28])

We define

hpxq :“ 1´
1

n

n´1
ÿ

h“0

Kwal,s,β,γpx,xhq

and for f P Hwal,s,β,γ let

Rn,Ppfq :“ |Ispfq ´Qn,spfq| “
ˇ

ˇ

ˇ
xf, hywal,s,γ

ˇ

ˇ

ˇ
,

as we know from the previous paragraph.
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First, we consider the case }f}wal,s,γ ď 1. An application of the inequality
of Cauchy and Schwarz yields

Rn,Ppfq “
ˇ

ˇ

ˇ
xf, hywal,s,γ

ˇ

ˇ

ˇ
ď }f}wal,s,γ}h}wal,s,γ ď }h}wal,s,γ (20)

as an upper bound for the worst-case error.

For a general f P Hwal,s,β,γ we therefore get

Rn,P

ˆ

f

}f}wal,s,γ

˙

“

ˇ

ˇ

ˇ
xf, hywal,s,γ

ˇ

ˇ

ˇ

}f}wal,s,γ
ď
}f}wal,s,γ}h}wal,s,γ

}f}wal,s,γ
“ }h}wal,s,γ . (21)

where we have equality for f “ h. So we can obtain the upper bound from
(20) by choosing f “ h in (21). Since, of course, h{}h}wal,s,γ is normed, it
is admissible for the supremum used to calculate the worst-case error and
hence

epQn,sq “ }h}wal,s,γ

Remark 4.8. Based on the result of Theorem 4.7 we can follow the steps
given in [6, p. 162] to simplify further, using identities from Remark 2.24 as
well as the reproducing property of Kwal,s,β,γ :

e2pQn,sq “

C

1´
1

n

n´1
ÿ

h“0

Kwal,s,β,γp¨,xhq, 1´
1

n

n´1
ÿ

h“0

Kwal,s,β,γp¨,xhq

G

wal,s,γ

“ ´1`
1

n2

n´1
ÿ

h,i“0

Kwal,s,β,γpxh,xiq (22)

“ ´1`
1

n2

n´1
ÿ

h,i“0

s
ź

j“1

´

1` γjφwal,βpx
pjq
h , x

pjq
i q

¯

. (23)

From (23) we see that the worst-case error in Hwal,s,β,γ using sample points
x0, . . . ,xn´1 can be calculated with a computational cost of Opn2sq and, as
we will see later, this cost can even be reduced to Opnsq operations if we use
digital pt,m, sq-nets (cf. [6, p. 163 and Remark 3]).

By definition, the worst-case error in Hwal,s,β,γ is entirely determined by
the point set to which the QMC-rule is applied. Thus, it is legitimate to
use the following notation for the worst-case error of a QMC-algorithm with
sample points x0, . . . ,xn´1:

epQn,sq “ en,spx0, . . . ,xn´1q.
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This allows us to introduce ẽn,s, the root mean square of the worst-case error,
through

ẽ2n,s :“

ż

r0,1qns
e2n,spx0, . . . ,xn´1q dx0 . . . dxn´1,

as given in [6, p. 163].

For this entity we are able to prove the following estimate:

Theorem 4.9. For β ą 1 the root mean square of the worst-case error
in Hwal,s,β,γ, as defined above, is bounded by

ẽn,s ď
1

n1{2
exp

˜

µpβq

2

s
ÿ

h“1

γj

¸

,

where µpβq is given by (see Lemma 2.16)

µpβq “
qβpq ´ 1q

qβ ´ q
.

(cf. [6, Theorem 1])

Proof. (Taken from [6, Theorem 1])

Using Equation (22) from Remark 4.8 we can rewrite ẽ2n,s as follows:

ẽ2n,s “ ´1`
1

n2

n´1
ÿ

h,i“0

ż

r0,1q2s
Kwal,s,β,γpxh,xiq dxh dxi

“ ´1`
1

n2

˜

n´1
ÿ

h“0

ż

r0,1qs
Kwal,s,β,γpxh,xhq dxh

`

n´1
ÿ

h,i“0
h‰i

ż

r0,1q2s
Kwal,s,β,γpxh,xiq dxh dxi

¸

.

The Walsh series of Kwal,s,β,γ is uniformly convergent, as we have already
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seen in the proof of Lemma 2.12. Thus, the first integral equals
ż

r0,1qs
Kwal,s,β,γpxh,xhq dxh “

ÿ

kPNs0

rpβ,γ,kq

ż

r0,1qs
walkpxqwalkpxq dx

“
ÿ

kPNs0

rpβ,γ,kq

ż

r0,1qs
wal0pxq dx

“
ÿ

kPNs0

rpβ,γ,kq

due to Proposition 2.10.(i) and (ii). This, again, can be simplified through
Lemma 2.16:

ÿ

kPNs0

rpβ,γ,kq “
s
ź

j“1

˜

8
ÿ

k“0

rpβ, γj, kq

¸

“

s
ź

j“1

p1` γjµpβqq .

We will now draw our attention to the latter integral, for which we get
ż

r0,1q2s
Kwal,s,β,γpxh,xiq dxh dxi “

ÿ

kPNs
0

rpβ,γ,kq

ż

r0,1q2s
walkpxqwalkpyq dx dy

“ 1,

as a result of Proposition 2.10 and the uniform convergence of the Walsh
series of Kwal,s,β,γ again.

Consequently, by inserting these results into the original formula, we ob-
tain

ẽ2n,s “ ´1`
1

n2

¨

˚

˝

n´1
ÿ

h“0

s
ź

j“1

p1` γjµpβqq `
n´1
ÿ

h,i“0
h‰i

1

˛

‹

‚

“ ´1`
1

n2

˜

n
s
ź

j“1

p1` γjµpβqq ` npn´ 1q

¸

“
1

n

˜

s
ź

j“1

p1` γjµpβqq ´ 1

¸

ď
1

n
exp

˜

µpβq
s
ÿ

j“1

γj

¸

,

where we used the inequality 1 ` x ď exppxq for each factor in the last
step.
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There is an essential conclusion which can be drawn from this result.

Corollary 4.10. If
ř8

j“1 γj ă 8, then we have strong QMC-tractability
for multivariate integration in Hwal,s,β,γ with an ε-exponent of at most 2.

(cf. [6, Remark 2])

Proof. From Theorem 4.9 we know that

ẽ2n,s ď
1

n
exp

˜

µpβq
s
ÿ

j“1

γj

¸

.

As ẽ2n,s is defined as the mean of e2n,s over all possible sample points we can
deduce that for all n P N there exists a point set tx0, . . . ,xn´1u Ď r0, 1q

s such
that

e2n,spx0, . . . ,xn´1q ď
1

n
exp

˜

µpβq
s
ÿ

j“1

γj

¸

,

(cf. [6, Remark 2]).

For an arbitrary ε P p0, 1q let n0 P N such that

n0 ă 2 exp

˜

µpβq
s
ÿ

j“1

γj

¸

ε´2 ď 2n0.

Therefore we have

e2n0,s
px0, . . . ,xn0´1q ď

1

n0

exp

˜

µpβq
s
ÿ

j“1

γj

¸

ď ε2

and hence

nminpε, sq ď n0 ă 2 exp

˜

µpβq
s
ÿ

j“1

γj

¸

ε´2

Since we assumed that
ř8

j“1 γj ă 8 and as we know that µpβq ą 0 and that
pγjqjPN is a sequence of non-negative numbers, we can estimate as follows

nminpε, sq ď 2 exp

˜

µpβq
s
ÿ

j“1

γj

¸

ε´2 ď 2 exp

˜

µpβq
8
ÿ

j“1

γj

¸

ε´2 “ :cβ,γε
´2,

which eliminates the dependency on s.
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4.2 Error analysis for digital pt,m, sq-nets over Fq

In this section we investigate which impact the use of digital nets has on the
worst-case error and on (strong) tractability respectively. From the definition
of digital pt,m, sq-nets over Fq we know, that the n “ qm sample points are
determined by the choice of generating matrices C1, . . . , Cs P Fmˆmq . We will
consider this fact by denoting the worst-case error by eqm,spC1, . . . , Csq if it
stems from a digital pt,m, sq-net over Fq with generating matrices C1, . . . , Cs.

At this point, we need to briefly recapitulate some definitions that were
made in the course of this thesis. First of all, ϕ1 was defined as an arbitrary
bijection from Zq onto Fq with ϕ1p0q “ 0, where 0 denotes the zero-element
of the respective additive group. Additionally, we considered its extension
ϕ : Zqm Ñ Fmq such that for k P Zqm with q-adic expansion k “

řm
i“1 κiq

i´1

we have ϕpkq “ pϕ1pκ1q, . . . , ϕ1pκmqq
J.

Moreover, we want to recall, that we identify Zqm with the least residue
system modulo qm. Hence, it will not do any harm if we extend ϕ to non-
negative integers by setting ϕpkq “ ϕpk mod qmq, k P N0.

Now, we can make the following definition:

Definition 4.11 (Dual net). Let C1, . . . , Cs be mˆm matrices over Fq,
s P N. Then, the dual net is defined by

D :“
 

k “ pk1, . . . , ksq P Ns
0 : CJ1 ϕpk1q ` ¨ ¨ ¨ ` C

J
s ϕpksq “ 0

(

.

Furthermore, we define
D˚ :“ Dzt0u.

(cf. [17, p. 412])

This setting allows us to even simplify the closed form of the worst-case
error which we had in Remark 4.8 and reduce its computational cost from
Opn2sq to Opqmsq “ Opnsq, (cf. [6, p. 163 and Remark 3]).
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Theorem 4.12. Let P “ tx0, . . . ,xqm´1u be a digital pt,m, sq-net over
Fq with generating matrices C1, . . . , Cs. Furthermore, we denote the jth

component of the point xh P P, 0 ď h ď qm´1, by x
pjq
h , for any 1 ď j ď s.

Then we have

e2qm,spC1, . . . , Csq “
ÿ

kPD˚
rpβ,γ,kq “ ´1`

1

qm

qm´1
ÿ

h“0

s
ź

j“1

p1`γjφwal,βpx
pjq
h , 0qq,

where φwal,β is defined as (see Theorem 2.20)

φwal,βpx, yq “

$

&

%

µpβq if x “ y,

µpβq ´ qpi0´1qp1´βqpµpβq ` 1q
if xi0 ‰ yi0 and
xi “ yi for all i ă i0,

with xi and yi denoting the ith digit in the q-adic expansion of x and y
respectively.

(cf. [17, p. 412])

Proof. For the first equality we adhere to the proof of [6, Theorem 2]. We
start off by inserting the corresponding values into the closed form of the
worst-case error which we had in the general case, i.e. Equation (22) in
Remark 4.8:

e2qm,spC1, . . . , Csq “ ´1`
1

q2m

qm´1
ÿ

h,i“0

Kwal,s,β,γpxh,xiq

Rem. 2.24
“ ´1`

1

q2m

qm´1
ÿ

h,i“0

ÿ

kPNs0

rpβ,γ,kqwalkpxhqwalkpxiq

Prop. 2.10
“ ´1`

1

q2m

qm´1
ÿ

h,i“0

ÿ

kPNs0

rpβ,γ,kqwalkpxh a xiq.

For a fixed i, 0 ď i ď qm´1, we notice that the mapping x ÞÑ xaxi for x P P
is nothing but a permutation of the elements of P , as pP ,‘q is a group (see
Theorem 3.6). Thus, each summand with respect to i in the above equation
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yields the same value. Therefore we have

e2qm,spC1, . . . , Csq “ ´1`
1

qm

qm´1
ÿ

h“0

ÿ

kPNs0

rpβ,γ,kqwalkpxhq (24)

“ ´1`
ÿ

kPNs0

rpβ,γ,kq
1

qm

qm´1
ÿ

h“0

walkpxhq.

From Lemma 3.8 we know that for k “ pk1, . . . , ksq the sum over h can be
reduced to

qm´1
ÿ

h“0

walkpxhq “

"

qm if CJ1 ϕpk1q ` ¨ ¨ ¨ ` C
J
s ϕpksq “ 0,

0 else.

Together with the fact that rpβ,γ,0q “ 1 we arrive at

e2qm,spC1, . . . , Csq “
ÿ

kPD˚
rpβ,γ,kq,

which proves the first equality.

For the second part we enter the above proof at (24) and exploit the fact
that walkp0q “ 1. This gives

e2qm,spC1, . . . , Csq “ ´1`
1

qm

qm´1
ÿ

h“0

ÿ

kPNs0

rpβ,γ,kqwalkpxhqwalkp0q

Rem. 2.24
“ ´1`

1

qm

qm´1
ÿ

h“0

s
ź

j“1

p1` γjφwal,βpx
pjq
h , 0qq.

Similarly to Theorem 4.9, we are interested in how the worst-case error
behaves in average when using digital nets over Fq as sample points. This
means, since the points of a digital net are already determined by its gener-
ating matrices, that we will now consider the mean of the square worst-case
error over all possible choices of generating matrices, as the next definition
indicates.
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Definition 4.13. We denote the set of all possible choices of s mˆm
generating matrices over Fq by

Cq :“
 

pC1, . . . , Csq : Cj P Fm̂ m
q for 1 ď j ď s

(

and we define Aqm,s as the mean square worst-case error over Cq, i.e.

Aqm,s :“
1

qm2s

ÿ

pC1,...,CsqPCq

e2qm,spC1, . . . , Csq.

(cf. [6, pp. 165f.])

Lemma 4.14. Let µpβq be defined as in Lemma 2.16 for some β ą 1.
Then the following assertions hold true for Aqm,s:

(i)

Aqm,s “ ´1`
1

qm

s
ź

j“1

p1` γjµpβqq `

ˆ

1´
1

qm

˙ s
ź

j“1

ˆ

1` γj
µpβq

qmβ

˙

and

(ii)

Aqm,s ď
2

qm

s
ź

j“1

p1` γjµpβqq .

(cf. [6, Lemma 4])

Proof.

(i) (Taken from [6, Lemma 4]).

From Theorem 4.12 we immediately get

Aqm,s “
1

qm2s

ÿ

pC1,...,CsqPCq

ÿ

kPD˚
rpβ,γ,kq.
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We transfer the condition for k “ pk1, . . . , ksq to be in D˚ to the sum
over Cq, giving

Aqm,s “
1

qm2s

ÿ

kPNs0zt0u

rpβ,γ,kq
ÿ

pC1,...,CsqPCq
CJ1 ϕpk1q`¨¨¨`C

J
s ϕpksq“0

1.

Thus, the remaining task is to determine the number of all possible
choices of generating matrices pC1, . . . , Csq which satisfy

řs
j“1C

J
j ϕpkjq “

0 for given pk1, . . . , ksq P Ns
0zt0u. To do so, we need to distinguish be-

tween two cases.

Case 1: There exists an l P Ns
0zt0u, such that k “ qml.

Due to the definition of ϕ, this means that for each kj, 1 ď j ď s, we
have ϕpkjq “ 0 and hence

řs
j“1C

J
j ϕpkjq “ 0 holds independently of

pC1, . . . , Csq. Therefore, all of the qm
2s s-tuples of generating matrices

fulfill this property.

Case 2: k “ k˚ ` qml, with l P Ns
0 and k˚ “ pk˚1 , . . . , k

˚
s q P Ns

0zt0u,
where 0 ď k˚j ă qm for each 1 ď j ď s.

Inserting kj into the bijection ϕ yields ϕpkjq “ ϕpk˚j q, 1 ď j ď s.
Therefore, we need to investigate how many pC1, . . . , Csq P Cq fulfill
řs
j“1C

J
j ϕpk

˚
j q “ 0.

To this end, we denote by cj,i the ith row vector of the matrix Cj and
we identify each k˚j with its q-adic expansion k˚j “ κ˚j,1 ` κ˚j,2q ` ¨ ¨ ¨ `
κ˚j,mq

m´1, where 1 ď i ď m and 1 ď j ď s. Note that cJj,i then is the
ith column vector of CJj . Thus, the above condition can be rewritten
as

s
ÿ

j“1

m
ÿ

i“1

cJj,iϕ1pκ
˚
j,iq “ 0. (25)

Since we assumed k˚ ‰ 0, we can deduce that there exists an index
1 ď j0 ď s such that k˚j0 ‰ 0. Hence we can find i0, 1 ď i0 ď m, such
that κ˚j0,i0 ‰ 0 and therefore ϕ1pκ

˚
j0,i0
q ‰ 0.

This in turn implies that for any choice of row vectors c1,1,. . ., c1,m,c2,1,
. . ., cj0,i0´1,cj0,i0`1,. . .,cs,m we can uniquely solve the condition given in
(25) for cj0,i0 , i.e. we have exactly qm

2s´m admissible elements in Cq in
the second case.
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Summarizing the intermediate results from above and abbreviating
maxtk˚1 , . . . , k

˚
s u as }k˚}8 for k˚ “ pk˚1 , . . . , k

˚
s q P Ns

0 yields

Aqm,s “
1

qm2s

ÿ

kPNs0zt0u

rpβ,γ,kq
ÿ

pC1,...,CsqPCq
CJ1 ϕpk1q`¨¨¨`C

J
s ϕpksq“0

1

“
1

qm2s

ÿ

lPNs0zt0u

rpβ,γ, qmlq qm
2s

`
1

qm2s

ÿ

lPNs0

ÿ

k˚PNs0zt0u
}k˚}8ăqm

rpβ,γ,k˚ ` qmlq qm
2s´m

“ ´1`
ÿ

lPNs0

rpβ,γ, qmlq `
1

qm

ÿ

lPNs0

ÿ

k˚PNs0zt0u
}k˚}8ăqm

rpβ,γ,k˚ ` qmlq.

We try to simplify these sums separately, starting with the first one.
By definition of rpβ,γ,kq, see Definition 2.22 and Equation (4), we
have

ÿ

lPNs0

rpβ,γ, qmlq “

s
ź

j“1

¨

˝

8
ÿ

lj“0

rpβ, γj, q
mljq

˛

‚

“

s
ź

j“1

¨

˝1`
8
ÿ

lj“1

q´βtlogqpq
mljqu

˛

‚

“

s
ź

j“1

¨

˝1`
8
ÿ

lj“1

q´βpm`tlogq ljuq

˛

‚

Lemma 2.16
“

s
ź

j“1

ˆ

1` γj
µpβq

qmβ

˙

. (26)

By using this result we obtain for the second sum

ÿ

lPNs0

ÿ

k˚PNs0zt0u
}k˚}8ăqm

rpβ,γ,k˚ ` qmlq

“
ÿ

kPNs0

rpβ,γ,kq ´
ÿ

lPNs0

rpβ,γ, qmlq

“

s
ź

j“1

p1` γjµpβqq ´
s
ź

j“1

ˆ

1` γj
µpβq

qmβ

˙

. (27)
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So, all in all we have

Aqm,s “ ´1`
ÿ

lPNs0

rpβ,γ, qmlq `
1

qm

ÿ

lPNs0

ÿ

k˚PNs0zt0u
}k˚}8ăqm

rpβ,γ,k˚ ` qmlq

“ ´1`
s
ź

j“1

ˆ

1` γj
µpβq

qmβ

˙

`
1

qm

˜

s
ź

j“1

p1` γjµpβqq ´
s
ź

j“1

ˆ

1` γj
µpβq

qmβ

˙

¸

“ ´1`
1

qm

s
ź

j“1

p1` γjµpβqq `

ˆ

1´
1

qm

˙ s
ź

j“1

ˆ

1` γj
µpβq

qmβ

˙

,

which is exactly what we wanted to show.

(ii) First of all, we will show the inequality given in the second part of the
proof of [6, Lemma 4], that is

´1`
s
ź

j“1

ˆ

1` γj
µpβq

qmβ

˙

ď
1

qm

s
ź

j“1

p1` γjµpβqq .

This can be seen as follows:

´1`
s
ź

j“1

ˆ

1` γj
µpβq

qmβ

˙

“
ÿ

uĎt1,...,su
u‰H

ź

iPu

γi
µpβq

qmβ

βą1
ď

1

qm

ÿ

uĎt1,...,su
u‰H

ź

iPu

γiµpβq

ď
1

qm

s
ź

j“1

p1` γjµpβqq . (28)

Together with part (i) we obtain

Aqm,s “ ´1`
1

qm

s
ź

j“1

p1` γjµpβqq `

ˆ

1´
1

qm

˙ s
ź

j“1

ˆ

1` γj
µpβq

qmβ

˙

ď
1

qm

s
ź

j“1

p1` γjµpβqq ´ 1`
s
ź

j“1

ˆ

1` γj
µpβq

qmβ

˙

ď
2

qm

s
ź

j“1

p1` γjµpβqq .
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This lemma tells us, that the root mean square average converges at a rate
of Opq´m{2q. However, we can still improve on the convergence speed under
certain conditions. In other words, we can prove the existence of generating
matrices for which the worst-case error converges at a speed of Opq´βm`δq
for any δ ą 0, (cf. [6, p. 167]).

In the proof of the following theorem we will use the so-called Jensen’s
inequality. It states that for a sequence of non-negative reals pakqkPN and for
any λ P p0, 1s we have that

˜

ÿ

kPN

ak

¸λ

ď
ÿ

kPN

aλk , (29)

see [6, p. 169], for instance.

Theorem 4.15. Let β ą 1 and λ P p1{β, 1s. Then, there exists a digital
pt,m, sq-net over Fq such that

e2qm,s ď cs,γ,λ,βq
´m
λ ,

where

cs,γ,λ,β “ 2
1
λ

s
ź

j“1

`

1` γλj µpβλq
˘

1
λ (30)

and µ is defined as in Lemma 2.16.

(cf. [6, Theorem 3, item 1])

Proof. (Taken from [6, Theorem 3, item 1]).

Before we start with the proof we need to fiddle with some notational matters
first. Although it was not explicitely mentioned beforehand, by definition,
the worst-case error depends on β and γ. We will now indicate this by writ-
ing eqm,spβ,γq. Furthermore, for pγλ1 , γ

λ
2 , . . .q we will simply write γλ.



Multivariate integration in the Hilbert space Hwal,s,β,γ 59

From Theorem 4.12 we know that for any digital net over Fq we have

e2qm,spβ,γq “
ÿ

kPD˚
rpβ,γ,kq

p29q

ď

˜

ÿ

kPD˚
rpβ,γ,kqλ

¸
1
λ

“

¨

˝

ÿ

pk1,...,ksqPD˚

s
ź

j“1

γλj q
´βλtlogq kju

˛

‚

1
λ

“

˜

ÿ

kPD˚
rpβλ,γλ,kq

¸
1
λ

“
`

e2qm,spβλ,γ
λ
q
˘

1
λ . (31)

It is to mention that the use of Jensen’s inequality was justifiable, as rpβ,γ,kq ě
0 and 1{β ă λ ď 1.

Lemma 4.14 implies – note that Aqm,s denotes the mean of the square
worst-case error with respect to all possible choices of generating matrices –
that there exists a digital pt,m, sq-net over Fq such that

e2qm,spβλ,γ
λ
q ď

2

qm

s
ź

j“1

`

1` γλj µpβλq
˘

.

Since βλ ą 1, the last expression makes perfect sense (µpαq is only defined
for α ą 1).

Finally, by putting together the results we have shown so far, we obtain

e2qm,spβ,γq ď
`

e2qm,spβλ,γ
λ
q
˘

1
λ ď

21{λ

qm{λ

s
ź

j“1

`

1` γλj µpβλq
˘

1
λ “ cs,γ,λ,β q

´m
λ .

This allows us to derive certain conditions under which integration in
the Hilbert space Hwal,s,β,γ is (strongly) tractable, as will be shown in the
following two corollaries.
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Corollary 4.16. Under the assumption that for some λ P p1{β, 1s

8
ÿ

j“1

γλj ă 8

holds, there exists a digital pt,m, sq-net over Fq such that

e2qm,s ď c8,γ,λ,β q
´m
λ ă 8,

where c8,γ,λ,β is (formally) given by (30). Hence, integration in Hwal,s,β,γ

is strongly QMC-tractable.

Furthermore, if

λ0 :“ inf

#

λ P p1{β, 1s :
8
ÿ

j“1

γλj ă 8

+

,

then the ε-exponent of strong QMC-tractability is at most 2λ0.

(cf. [6, Theorem 3, item 2])

Proof. At first we will show that

c8,γ,λ,β ă 8.

To this end, we follow the proof of [6, Theorem 3, item 2]. Assuming that
λ P p1{β, 1s we obtain

c8,γ,λ,β
p30q
“ 2

1
λ

8
ź

j“1

`

1` γλj µpβλq
˘

1
λ

“ 2
1
λ exp

˜

1

λ

8
ÿ

j“1

log
`

1` γλj µpβλq
˘

¸

.

Since
ř8

j“1 γ
λ
j ă 8 and for all x ą ´1 it is true that logp1 ` xq ď x, we

obtain

c8,γ,λ,β ď 2
1
λ exp

˜

µpβλq

λ

8
ÿ

j“1

γλj

¸

ă 8.
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Trivially, we have 1 ` γλj µpβλq ě 1 for γj ą 0 (the latter is required by def-
inition of Hwal,s,β,γ) and therefore cs,γ,λ,β ď c8,γ,λ,β for any s P N. Together
with Theorem 4.15 this implies

e2qm,s ď cs,γ,λ,β q
´m
λ ď c8,γ,λ,β q

´m
λ ă 8,

which proves the first assertion.

For the second part let ε P p0, 1q be fixed. For this ε choose m P N such
that

qm´1 ă
`

c8,γ,λ,β ε
´2
˘λ

looooooomooooooon

“:M

ď qm.

Then we have
eqm,s ď c

1
2
8,γ,λ,β q

´m
2λ ď ε

and hence
nminpε, sq ď qm ă qM “ q

`

c8,γ,λ,β ε
´2
˘λ
.

Therefore we have found an upper bound for nminpε, sq which is independent
of s and (at most) polynomially dependent on ε, implying strong tractability.

Furthermore, if we denote the infimum of all λ satisfying
ř8

j“1 γ
λ
j ă 8

by λ0, it immediately follows that the ε-exponent is 2λ0, at most.

Remark 4.17. If q is a prime number, then the ε-exponent is always at least
2{β. This follows from Theorem 19 in Discrepancy theory and quasi-Monte
Carlo integration by J. Dick and F. Pillichshammer, which is to appear in A
panorama in discrepancy theory.

Corollary 4.18. Assuming

A :“ lim sup
sÑ8

řs
j“1 γj

log s
ă 8,

there exists a digital pt,m, sq-net over Fq and a constant cδ which is solely
dependent on an arbitrary δ ą 0 such that

e2qm,s ď cδs
µpβqpA`δqq´m.

Thus, under this condition, integration in Hwal,s,β,γ is QMC-tractable
with an s-exponent of at most µpβqA and an ε-exponent of at most 2.

(cf. [6, Theorem 3, item 3])
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Proof. Again, for the estimation of the worst-case error, we proceed as in the

proof of [6, Theorem 3]. Provided that A “ lim supsÑ8

řs
j“1 γj

log s
ă 8, for any

δ ą 0 we can find an sδ such that for all s ě sδ we have

s
ÿ

j“1

γj ď pA` δq log s. (32)

Inserting λ “ 1 in (30) in Theorem 4.15 and using logp1 ` xq ď x for all
x ą ´1 yields

cs,γ,1,β “ 2
s
ź

j“1

p1` γjµpβqq

“ 2s
řs
j“1

logp1`γjµpβqq

log s

ď 2s
µpβq

řs
j“1 γj

log s

p32q

ď 2sµpβqpA`δq

for s sufficiently large. In other words, there exists a positive constant cδ
such that

cs,γ,1,β ď cδs
µpβqpA`δq

for all s P N. Considering this inequality in Theorem 4.15 finishes the first
part of the proof.

For an arbitrary ε P p0, 1q we choose m P N such that

qm´1 ă cδs
µpβqpA`δqε´2 ď qm

and continue as in the proof of Corollary 4.16 to find that

nminpε, sq ď qcδs
µpβqpA`δqε´2.

Therefore, if A ă 8, integration in Hwal,s,β,γ is QMC-tractable with an ε-
exponent of at most two. Furthermore, since the exponents of tractability
were defined as infima and as δ ą 0 was chosen arbitrarily, the s-exponent is
at most µpβqA.

What we have shown so far is, that there exists at least one digital
pt,m, sq-net which fulfills a rather favourable error estimation (cf. Theo-
rem 4.15). Up to this point, however, we do not have any idea how many
digital nets can meet a certain error barrier. To describe this problem in
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a more mathematical way we consider the set of all possible choices of s
generating matrices over Fq (see Definition 4.13)

Cq :“
 

pC1, . . . , Csq : Cj P Fm̂ m
q for 1 ď j ď s

(

and the equiprobable measure ν on Cq, which is defined by

νpC1, . . . , Csq “
1

qm2s
@ pC1, . . . , Csq P Cq.

For c ą 1 and 1{β ă λ ď 1 we define

Cqpc, λq :“

"

pC1, . . . , Csq P Cq : eqm,spC1, . . . , Csq ď c
1
λ

b

cs,γ,λ,βq
´m
λ

*

,

i.e. all choices of s generating matrices for which the worst-case error worsens
at most by the factor c1{λ compared to that in Theorem 4.15. Thus, we are
interested in how large Cqpc, λq actually is with respect to ν (cf. [6, p. 168]).

Theorem 4.19. Let c ą 1 and 1{β ă λ ď 1. Using the definitions from
the paragraph above we get

ν pCqpc, λqq ą 1´ c´2.

(cf. [6, Theorem 3, item 4])

Proof. (Adapted from [6, Theorem 3, item 4])

The proof of this theorem will be split into two parts:

1. We will define a set C̃qpcq Ď Cq, for which νpC̃qpcqq ą 1´ c´2 holds.

2. Subsequently, we will show that C̃qpcq Ď Cqpc, λq.

ad 1. For the worst-case error in Hwal,s,β,γ with β ą 1 and weights γj ą 0, 1 ď
j ď s, using a digital net over Fq with generating matrices C1, . . . , Cs
we write eqm,spβ,γ, pC1, . . . , Csqq. Furthermore, we define

C̃qpcq :“

#

pC1, . . . , Csq P Cq : eqm,s
`

βλ,γλ, pC1, . . . , Csq
˘

ď c

?
2

qm{2

s
ź

j“1

`

q ` γλj µpβλq
˘

1
2

+

.
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Now we can estimate the mean square worst-case error over Cq, i.e.
Aqm,s (cf. Definition 4.13), with parameters βλ and γλ as follows:

Aqm,s “
1

qm2s

ÿ

pC1,...,CsqPCq

e2qm,s
`

βλ,γλ, pC1, . . . , Csq
˘

ě
1

qm2s

ÿ

pC1,...,CsqPCqzC̃qpcq

e2qm,s
`

βλ,γλ, pC1, . . . , Csq
˘

ą
1

qm2s

ÿ

pC1,...,CsqPCqzC̃qpcq

c2
2

qm

s
ź

j“1

`

1` γλj µpβλq
˘

“ c2
2

qm

s
ź

j“1

`

1` γλj µpβλq
˘

ν
´

CqzC̃qpcq
¯

.

From Lemma 4.14 we know that

Aqm,s ď
2

qm

s
ź

j“1

`

1` γλj µpβλq
˘

,

if we use the parameters βλ and γλ instead of β and γ respectively.
Exploiting this fact and using the identity

ν
´

CqzC̃qpcq
¯

“ 1´ ν
´

C̃qpcq
¯

finally yields

ν
´

C̃qpcq
¯

ą 1´ c´2.

ad 2. For any pC1, . . . , Csq P Cq the inequality given in (31) in Theorem 4.15
tells us that

epβ,γ, pC1, . . . , Csqq ď e
1
λ pβλ,γλ, pC1, . . . , Csqq.

Thus, if we assume pC1, . . . , Csq P C̃qpcq for c ą 1, we have

e2pβ,γ, pC1, . . . , Csqq ď c
2
λ q´

m
λ

s
ź

j“1

`

1` γλj µpβλq
˘

1
λ “ c

2
λ cs,γ,λ,βq

´m
λ

by definition of C̃qpcq and hence pC1, . . . , Csq P Cqpc, λq.

By combining the results of 1. and 2. we have shown that

ν pCqpc, λqq ě ν
´

C̃qpcq
¯

ą 1´ c´2.
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To illustrate the significance of this result we for instance consider c “ 10.
As λ ą 1{β we can say that for at least 99 % of all choices of s generating
matrices the worst-case error increases at most by a factor of 101{λ ď 10β,
(cf. [6, Remark 4]).

We want to close this section by giving both necessary and sufficient
conditions for (strong) QMC-tractability. Before we do so, however, we try
to obtain a lower bound for the worst-case error.

Theorem 4.20. The worst-case error in Hwal,s,β,γ for a QMC-algorithm
using the sample points x0, . . . ,xn´1 is bounded from below by

e2n,s pHwal,s,β,γq ě ´1`
1

n

s
ź

j“1

p1`minpγj, 1qµpβqq .

(cf. [6, Theorem 4])

Proof. (Taken from [6, pp. 170f.]).

We begin by showing that Kwal,s,β,γ ě 0 if γj ą 0 for all 1 ď j ď s. From
Equation (12) in Remark 2.24 we know that the reproducing kernel can be
written as

Kwal,s,β,γpx,yq “
s
ź

j“1

`

1` γjφwal,βpx
pjq, ypjqq

˘

,

for x “ pxp1q, . . . , xpsqq P r0, 1qs and y “ pyp1q, . . . , ypsqq P r0, 1qs and where

φwal,βpx, yq “

$

&

%

µpβq if x “ y,

µpβq ´ qpi0´1qp1´βqpµpβq ` 1q
if xi0 ‰ yi0 and
xi “ yi for all i ă i0

(see Lemma 2.19). The numbers xi and yi hereby stem from the q-adic ex-
pansions of x and y respectively.

Since β ą 1 and q ě 2 we can estimate as follows:

µpβq
Lemma 2.16
“

qβpq ´ 1q

qβ ´ q
ě

qβ

qβ ´ q
ą 1.
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As q1´β ă 1 and i0 ě 1 we arrive at

µpβq ´ qpi0´1qp1´βqpµpβq ` 1q “ µpβq
`

1´ qpi0´1qp1´βq
˘

´ qpi0´1qp1´βq

ą 1´ 2qpi0´1qp1´βq

ą ´1.

Hence we have

1` γjφwal,β ě 0

for γj ď 1.

For simplification reasons we define γ1j :“ minpγj, 1q, 1 ď j ď s, and
γ 1 “ pγ11, . . . , γ

1
sq. Thus, Kwal,s,β,γ1 ě 0.

It is easy to see that

}f}2wal,s,γ1 “
ÿ

kPNs0

rpβ,γ 1,kq´1|f̂pkq|2 ě
ÿ

kPNs0

rpβ,γ,kq´1|f̂pkq|2 “ }f}2wal,s,γ ,

for any f P Hwal,s,β,γ1 , since rpβ,γ,kq increases with respect to the entries of
γ, as we know from Definition 2.22 and Equation (4). This in turn implies
that the closed unit ball of Hwal,s,β,γ1 is contained in the closed unit ball of
Hwal,s,β,γ . For the worst-case error we therefore have

e2n,spHwal,s,β,γ1q ď e2n,spHwal,s,β,γq,

where en,spHwal,s,β,γ̃q denotes the worst-case error in the space Hwal,s,β,γ̃ , for
an arbitrary but fixed QMC-rule Qn,s.
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For any point set tx0, . . . ,xn´1u Ď r0, 1q
s we obtain

e2n,spHwal,s,β,γ1q
p22q
“ ´1`

1

n2

n´1
ÿ

h,i“0

Kwal,s,β,γ1pxh,xiq

ě ´1`
1

n2

n´1
ÿ

h“0

Kwal,s,β,γ1pxh,xhq

p13q
“ ´1`

1

n2

n´1
ÿ

h“0

ÿ

kPNs0

rpβ,γ 1,kqwalkpxhqwalkpxhq

Prop. 2.10
“ ´1`

1

n2

n´1
ÿ

h“0

ÿ

kPNs0

rpβ,γ 1,kqwalkp0q

“ ´1`
1

n

ÿ

kPNs0

rpβ,γ 1,kq

“ ´1`
1

n

s
ź

j“1

8
ÿ

k“0

rpβ, γ1j, kq

Lemma 2.16
“ ´1`

1

n

s
ź

j“1

`

1` γ1jµpβq
˘

.

This already suffices to derive necessary conditions for tractability and
strong tractability of integration in Hwal,s,β,γ .

Corollary 4.21.

(i) Multivariate integration in Hwal,s,β,γ is strongly QMC-tractable if
and only if

ř8

j“1 γj ă 8.

(ii) Multivariate integration in Hwal,s,β,γ is QMC-tractable if and only
if lim supsÑ8

řs
j“1 γj{ log s ă 8.

(cf. [6, Corollary 1])

Proof. The if -part has already been shown in Corollary 4.16 for (i) and in
Corollary 4.18 for (ii).
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So, we assume that multivariate integration in Hwal,s,β,γ is strongly QMC-
tractable, i.e. nminpε, sq ď cε´a for any ε P p0, 1q and some constants c, a ě 0,
both independent of s. In any case, it follows from Theorem 4.20 that

nminpε, sq ě

śs
j“1 p1`minpγj, 1qµpβqq

1` ε2
, (33)

(cf. [6, p. 171]).

Now, we will proceed in a similar fashion as H. I. Sloan and H. Woźniakowski
did in [18, p. 715]. By definition of Hwal,s,β,γ we know, that pγjqjPN is a se-
quence of positive and non-increasing real numbers. Thus, there either exists
a γ0 such that γj ě γ0 ą 0 for all j ě 1 or the sequence converges to zero.
First, suppose the sequence pγjqjPN is uniformly bounded from below by, say,
γ0 ą 0. Then (33) can be estimated further

nminpε, sq ě
p1`minpγ0, 1qµpβqq

s

1` ε2
.

Hence, nmin grows exponentially with s, which contradicts tractability. Thus,
we may restrict ourselves to the case where limjÑ8 γj “ 0. Additionally, for
contradiction we assume

ř8

j“1 γj “ 8. In this case we can rewrite (33) as
follows:

nminpε, sq ě
exp

´

řs
j“1 log p1`minpγj, 1qµpβqq

¯

1` ε2
.

If we now manage to show that
ř8

j“1 log
`

1 ` minpγj, 1qµpβq
˘

“ 8 we can
deduce that nminpε, sq tends towards infinity as s Ñ 8, which is clearly a
contradiction to strong tractability.

But this is indeed the case as can be found in the proof of [8, Theorem 4],
for instance:

8
ÿ

j“1

γj ă 8 ðñ
8
ÿ

j“1

logp1` γjq ă 8.

The implication from left to right follows immediately from the fact that
logp1`γjq ď γj. On the other hand, we know that pγjqjPN is a non-increasing
sequence, which means there exists a constant C ą 0 with γj ď C for all
j P N. Therefore we can find another constant d “ dpCq ą 0 such that
dx ď logp1` xq for any x P r0, Cs and consequently

8
ÿ

j“1

γj ď
1

d

8
ÿ

j“1

logp1` γjq ă 8,
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which completes the proof of the first part.

It is left to show is that QMC-tractability in Hwal,s,β,γ implies

lim sup
sÑ8

řs
j“1 γj

log s
ă 8.

Following [18, p. 715] again, we already know that limjÑ8 γj “ 0 is a neces-
sary condition for tractability. Rewriting the numerator of the right handside
in (33) gives

s
ź

j“1

`

1`minpγj, 1qµpβq
˘

“ s
řs
j“1 logs

`

1`minpγj ,1qµpβq
˘

“ s
řs
j“1

logp1`minpγj,1qµpβqq

log s .

Under the assumption that lim supsÑ8
řs
j“1 γj{ logpsq “ 8 and using the

same argument as in the proof of the first part we can now conclude that
nminpε, sq grows faster than any power of s, contradicting QMC-tractability.

Finally, we investigate what happens to the worst-case error whenever β
approaches 1.

Corollary 4.22. Let Qn,s be an arbitrary QMC-algorithm and let
epQn,s,Hwal,s,β,γq denote the worst-case error for integration in Hwal,s,β,γ.
Then we have

lim
βÑ1`

epQn,s,Hwal,s,β,γq “ 8.

(cf. [6, Theorem 5])

Proof. (Taken from [6, Theorem 5]).

From Theorem 4.20 we know that

e2pQn,s,Hwal,s,β,γq ě ´1`
1

n

s
ź

j“1

`

1`minpγj, 1qµpβq
˘

and together with

lim
βÑ1`

µpβq “ lim
βÑ1`

qβpq ´ 1q

qβ ´ q
“ 8

we obtain the desired result.
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5 Construction algorithms for digital pt,m, sq-

nets over Fq
Although we have the existence of digital pt,m, sq-nets over Fq with a rather
favourable behavior with respect to the worst-case error at hand, which may,
in some cases, even exploit (strong) tractability, we still have not yet solved
the problem of finding such. To this end we will intoduce algorithms for
constructing generating matrices using formal Laurent series over Fq and in-
vestigate the performance of the resulting digital nets concerning integration
in Hwal,s,β,γ .

As it was also done in [4, p. 1898], we begin by defining the field of formal
Laurent series over the finite field Fq, i.e.

Fqppx´1qq :“

#

8
ÿ

l“w

tlx
´l : w P Z and tl P Fq for all l ě w

+

,

and denote the set of all polynomials over Fq by Fqrxs. The first types of
digital nets we are drawing our attention to are so-called polynomial lattice
point sets, which were first introduced by H. Niederreiter in [12] (see also
Section 4.4 in [14]).

5.1 Polynomial lattice point sets

Definition 5.1 (Polynomial lattice rule). Let p P Fqrxs with deg p “
m P N. Additionally, we consider q1, . . . , qs P Fqrxs and the Laurent
series expansions

qjpxq

ppxq
“

8
ÿ

l“wj

u
pjq
l x´l P Fqppx´1qq

with wj ď 1, for 1 ď j ď s. Furthermore, we set

c
pjq
i,r “ u

pjq
i`r P Fq,

where 1 ď i ď m, 0 ď r ď m´ 1 and define

Cj :“
´

c
pjq
i,r

¯

i“1,...,m
r“0,...,m´1

“

¨

˚

˚

˚

˚

˝

u
pjq
1 u

pjq
2 ¨ ¨ ¨ u

pjq
m

u
pjq
2

. .
. ...

... . .
. ...

u
pjq
m ¨ ¨ ¨ ¨ ¨ ¨ u

pjq
2m´1

˛

‹

‹

‹

‹

‚

(34)
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for all 1 ď j ď s. The matrices C1, . . . , Cs are now used to construct
a digital pt,m, sq-net over Fq as described in Definition 3.4, forming a
so-called polynomial lattice point set. We denote this set by Sppqq, where
q “ pq1, . . . , qsq, and call a QMC-rule employing Sppqq as sample points
a polynomial lattice rule.

(cf. [4, Definition 2.3, Remark 2.4])

Remark 5.2. Since u
pjq
1 is the entry with the lowest index in Cj, it suffices

to merely consider such polynomials qj with degpqjq ď m ´ 1, 1 ď j ď s,
(cf. [5, Remark 10.12]).

In the case where q is a prime number, the construction principle of
polynomial lattice point sets can be held considerably simpler.

Theorem 5.3. Let q be a prime, p P Fqrxs with degppq “ m P N and
q “ pq1, . . . , qsq P Fsqrxs. We define the map vm : Fqppx´1qq Ñ r0, 1q by

vm

˜

8
ÿ

l“w

tlx
´l

¸

:“
m
ÿ

l“maxp1,wq

tlq
´l.

As, in the prime case, Fq corresponds to Zq, we may choose ϕ1 “ id and
hence, with every 0 ď h ă qm with q-adic expansion h “ h1` h2q` ¨ ¨ ¨ `
hmq

m´1 we can associate the polynomial

hpxq “ h1 ` h2x` ¨ ¨ ¨ ` hmx
m´1

P Fqrxs.

Then, the polynomial lattice point set Sppqq is given by the points

xh “

ˆ

vm

ˆ

hpxqq1pxq

ppxq

˙

, . . . , vm

ˆ

hpxqqspxq

ppxq

˙˙

,

0 ď h ă qm.

(cf. [4, Remark 2.7])
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Proof. In accordance to Definition 5.1 we expand

qjpxq

ppxq
“

8
ÿ

l“wj

u
pjq
l x´l

for all 1 ď j ď s. For the evaluation of vm applied to the following fraction
we adhere to the proof of [5, Theorem 10.5]. For an arbitrary 0 ď h ă qm

with q-adic expansion h “
řm´1
k“0 hk`1q

k we get

hpxqqjpxq

ppxq
“

¨

˝

8
ÿ

l“wj

u
pjq
l x´l

˛

‚

˜

m´1
ÿ

k“0

hk`1x
k

¸

“

8
ÿ

l“wj

u
pjq
l

m´1
ÿ

k“0

hk`1x
k´l.

We substitute r :“ l ´ k and set u
pjq
i “ 0 for 1 ď i ă wj, if existent. Since

vm only considers the truncated polynomial where 1 ď r ď m, we obtain

vm

ˆ

hpxqqjpxq

ppxq

˙

“ vm

˜

m
ÿ

r“1

x´r
m´1
ÿ

l“0

u
pjq
r`lhl`1

¸

“

m
ÿ

r“1

q´r
m´1
ÿ

l“0

u
pjq
r`lhl`1.

It needs to be added, that the sum over l is evaluated in Fq.

Let cj,k “ pu
pjq
k , . . . , u

pjq
k`m´1q denote the kth row of the generating matrix

Cj. Thus, using the fact that Cj is symmetric, we have

y
pkq
j phq “ cj,kph1, . . . , hmq

J
“

m´1
ÿ

l“0

u
pjq
k`lhl`1.

As the jth component of the point xh is given by
řm
k“1 y

pkq
j phqq

´k we are
finished.

For some choices of the polynomials involved we can even make assertions
concerning the distribution of the point set Sppqq itself, as it will be shown in
the next theorem. To do so, however, we require the result of the following
lemma which was given by R. Lidl and H. Niederreiter in [11].

Lemma 5.4. Let qj, p P Fqrxs with deg p “ m P N and gcdpqj, pq “ 1.
Then, the matrix Cj P Fm̂ m

q obtained by the methods from Definition 5.1
is regular.
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Proof. See [11, Theorem 6.75].

Theorem 5.5. Let p P Fqrxs with degppq “ m P N. Furthermore, let

q1, . . . , qs P Fqrxs such that gcdpqj, pq “ 1 for all 1 ď j ď s. By x
pjq
h we

denote the jth coordinate of the point xh P Sppqq, 0 ď h ă qm. Then, for

every 1 ď j ď s the point set tx
pjq
0 , . . . , x

pjq
qm´1u is a p0,m, 1q-net over Fq.

(cf. [4, Remark 2.5])

Proof. Let 1 ď j ď s be a fixed integer and let

E :“

„

a

qm
,
a` 1

qm

˙

,

where 0 ď a ă qm, be an arbitrary one-dimensional elementary interval
in base q of order m. We need to show that there exists exactly one h P
t0, . . . , qm ´ 1u such that x

pjq
h P E. If we consider the q-adic expansion of a,

i.e.
a “ a1 ` a2q ` ¨ ¨ ¨ ` amq

m´1,

we immediately notice that

x P E ðñ x has the q-adic expansion x “
am
q
` ¨ ¨ ¨ `

a1
qm
`
ξm`1
qm`1

` ¨ ¨ ¨

with suitable coefficients 0 ď ξk ă q, k ą m. Thus, to find a unique h “
h1 ` ¨ ¨ ¨ ` hmq

m´1 with the desired property we need to solve the system of
linear equations

Cj

¨

˚

˝

ϕ1ph1q
...

ϕ1phmq

˛

‹

‚

“

¨

˚

˝

ϕ1pamq
...

ϕ1pa1q

˛

‹

‚

.

Lemma 5.4 secures the existence of exactly one solution and togehter with
the fact that ϕ1 is bijective the result follows.

Apart from deciding on which polynomials to choose for the construction
of a polynomial lattice point set, the only tedious task left is to determine
the coefficients of the Laurent series expansion. This, however, is facilitated
by the identities given in the following theorem.
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Theorem 5.6. Let m P N and p, q P Fqrxs, where

ppxq “ xm ` p1x
m´1

` ¨ ¨ ¨ ` pm´1x` pm

and
qpxq “ q1x

m´1
` ¨ ¨ ¨ ` qm´1x` qm.

Then, the coefficients ul P Fq, l ě 1 from the Laurent series expansion

qpxq

ppxq
“

8
ÿ

l“1

ulx
´l

can be retrieved for l ď m from the linear system of equations

¨

˚

˚

˚

˚

˝

1 0 ¨ ¨ ¨ 0

p1
. . .

. . .
...

...
. . .

. . . 0
pm´1 ¨ ¨ ¨ p1 1

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˝

u1
u2
...
um

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

q1
q2
...
qm

˛

‹

‹

‹

‚

and from the recursion

0 “ ul ` ul´1p1 ` ul´2p2 ` ¨ ¨ ¨ ` ul´mpm

for l ą m.

(cf. [4, Proposition 2.6])

Proof. First of all, we rewrite the occuring polynomials into a closed sum,
giving ppxq “

řm
i“0 pm´ix

i and qpxq “
řm´1
j“0 qm´jx

j, where p0 :“ 1, and
consider the equation

m´1
ÿ

j“0

qm´jx
j
“ qpxq “ ppxq

8
ÿ

l“1

ulx
´l

“

8
ÿ

l“1

ul

m
ÿ

i“0

pm´ix
i´l

“

8
ÿ

l“1

ul

m´l
ÿ

r“´l

pm´r´lx
r.
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For simplicity reasons we set pi “ 0 for i R t0, . . .mu. Comparing the coeffi-
cients of the various powers of x, as suggested in the proof of [4, Proposition
2.6], then leads to

qm´j “
8
ÿ

l“1

ulpm´j´l for 0 ď j ď m´ 1

ðñ qk “

8
ÿ

l“1

ulpk´l for 1 ď k ď m. (35)

Thus, for any k P t1, . . . ,mu we have (after eliminating the cases where
pk´l “ 0)

qk “
k
ÿ

l“1

ulpk´l,

which, most certainly, corresponds to the linear system of equations given in
the claim of this theorem. Similarly, we see from (35) that

0 “
k
ÿ

l“k´m

ulpk´l

for k ą m, which proves the second assertion.

Before we proceed further, we introduce some notation. In the case where
q is a prime number similar definitions can be found in [4, pp. 1900 and
1904f.].

For 1 ď k ă qm with q-adic expansion k “ κ1 ` κ2q ` ¨ ¨ ¨ ` κmq
m´1 we

define the polynomial kpxq “ ϕ1pκ1q ` ϕ1pκ2qx ` ¨ ¨ ¨ ` ϕ1pκmqx
m´1 P Fqrxs.

Furthermore, we introduce the mapping trm : N0 Ñ Zqm with

trm

˜

8
ÿ

i“0

κi`1q
i

¸

:“ κ1 ` κ2q ` ¨ ¨ ¨ ` κmq
m´1,

where 0 ď κi ă q for all i P N. Similarly to the above case, we associate
trmpkq, k “

ř8

i“0 κi`1q
i, with the polynomial

trmpkq “ ϕ1pκ1q ` ϕ1pκ2qx` ¨ ¨ ¨ ` ϕ1pκmqx
m´1

P Fqrxs.

For k P Ns
0 we define trmpkq and trmpkq componentwise.
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Moreover, for p “ pp1, . . . , psq and q “ pq1, . . . , qsq, both in Fsqrxs, we set

p ¨ q :“
s
ÿ

j“1

pjqj P Fqrxs.

Finally, we define the set of all non-zero polynomials over Fq with degree
less than m by

Gq,m :“ tk P Fqrxszt0u : degpkq ă mu

and its s-dimensional analogon by the s-fold cartesian product

Gs
q,m :“

s
ź

j“1

Gq,m.

We now draw our attention to the square worst-case error again. In
Theorem 4.12 we have shown that for any s-tuple of generating matrices
pC1, . . . , Csq over Fq we can compute the worst-case error for the correspond-
ing digital net by evaluating the sum

e2qm,spC1, . . . , Csq “
ÿ

kPDzt0u

rpβ,γ,kq,

where the dual net is given by

D “

#

pk1, . . . , ksq P Ns
0 :

s
ÿ

j“1

CJj ϕpkjq “ 0

+

.

It hardly comes as a surprise that we obtain a very similar result for polyno-
mial lattice point sets.

Lemma 5.7. Let p P Fqrxs with degppq “ m P N and q “ pq1, . . . , qsq P
Fsqrxs. Then, for a QMC-rule employing the polynomial lattice point set
Sppqq, the worst-case error for integration in Hwal,s,β,γ can be calculated
via

e2qm,spSppqqq “
ÿ

kPD˚p,q

rpβ,γ,kq.

Here, the dual net Dp,q is defined as

Dp,q :“ tk P Ns
0 : trmpkq ¨ q ” 0 pmod pqu

and D˚p,q :“ Dp,qzt0u, where for two polynomials r, s P Fqrxs we interpret
r ” 0 pmod sq as s divides r in Fqrxs.

(cf. [4, Lemma 4.1] and [5, p. 300])
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Proof. For all 1 ď j ď s let

qj
p
“

8
ÿ

l“wj

u
pjq
l x´l P Fqppxp´1qqq

and let C1, . . . , Cs P Fm̂ m
q be the generating matrices obtained by (34). Due

to Theorem 4.12 it suffices to show that
s
ÿ

j“1

CJj ϕpkjq “ 0 ðñ trmpkq ¨ q ” 0 pmod pq

for every k “ pk1, . . . , ksq P Ns
0zt0u, as indicated in the proof of [4, Lemma 4.1].

To this end, we follow the proof of [5, Lemma 10.6]. So, first of all, we
intend to find a formula for the coefficient of x´r, r P N, in ptrmpkq ¨ qq{p.
For every 1 ď j ď s we consider the polynomial trmpkjqpxq “ ϕ1pκj,1q `
ϕ1pκj,2qx`¨ ¨ ¨`ϕ1pκj,mqx

m´1 P Fqrxs, where κj,i denotes the ith q-adic digit
of kj. We have

trmpkjqqj
p

“

˜

m´1
ÿ

i“0

ϕ1pκj,i`1qx
i

¸

¨

˝

8
ÿ

l“wj

u
pjq
l x´l

˛

‚

“

m´1
ÿ

i“0

ϕ1pκj,i`1q
8
ÿ

l“wj

u
pjq
l xi´l

“

m´1
ÿ

i“0

ϕ1pκj,i`1q
8
ÿ

r“wj´i

u
pjq
r`ix

´r.

Therefore, the coefficient of x´r, r P N, in the above fraction is given by

m´1
ÿ

i“0

ϕ1pκj,i`1qu
pjq
r`i

and hence the coefficient of x´r in ptrmpkq ¨ qq{p is

s
ÿ

j“1

m´1
ÿ

i“0

ϕ1pκj,i`1qu
pjq
r`i.

By taking a closer look on the condition for pk1, . . . , ksq being an element of
D we find that

CJ1 ϕpk1q ` ¨ ¨ ¨ ` C
J
s ϕpksq “ 0 ðñ @1 ď r ď m :

s
ÿ

j“1

m´1
ÿ

i“0

ϕ1pκj,i`1qu
pjq
r`i “ 0.
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This, however, is equivalent to the coefficients of x´r in ptrmpkjqqjq{p being
zero for all 1 ď r ď m, i.e.

1

p
trmpkq ¨ q “ g` L (36)

for some g P Fqrxs and some L “
ř8

k“m`1 fkx
´k P Fppx´1qq. Note that this

sum starts at k “ m` 1. Rearranging this equation yields

trmpkq ¨ q´ gp “ Lp.

We observe that the highest power of x in L is ´pm` 1q at most and p has
degree m, whereas on the left handside we have an element of Fqrxs, leaving
L “ 0 as the only possibility, which in turn means that p divides trmpkq ¨ q.
Thus, we can say that (36) holds if and only if trmpkq ¨ q ” 0 pmod pq.

We now consider the case where p is irreducible over Fq. By definition
we have that k “ pk1, . . . , ksq P Dp,q iff

trmpkq ¨ q “ trmpk1qq1 ` ¨ ¨ ¨ ` trmpksqqs ” 0 pmod pq.

Since p is irreducible, it follows that gcdpq1, pq “ 1 in Fqrxs whenever degpq1q ă
degppq and q1 ‰ 0. This, however, is no restriction due to Remark 5.2. Hence,
one can always find q˚1 P Fqrxs such that q˚1q1 ” 1 pmod pq. Thus, whenever
we choose p irreducible over Fqrxs and we want to make assertions involv-
ing the dual net Dp,q or – due to Lemma 5.7 – the worst-case error, we can
restrict ourselves to the case where q1 “ 1, (cf. [5, Remark 10.10]).

5.1.1 The component-by-component construction

In Section 4.2 we have shown several existence results for digital pt,m, sq-
nets satisfying a certain error bound or exploiting (strong) tractability under
certain conditions (see, for instance, Theorem 4.15 and Corollaries 4.18 and
4.16).

Lemma 5.7 together with Remark 5.2 and the above discussion already
provide enough information to state an executable routine to find a digital
net for which the worst-case error behaves rather favourably. The algorithm
works as follows:
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Algorithm 5.8 (Component-by-component construction). Choose an ir-
reducible polynomial p P Fqrxs with degppq “ m P N and let all parame-
ters necessary to define the weighted Hilbert space Hwal,s,β,γ be given.

1. q1 :“ 1.

2. For d “ 2, . . . , s find qd P Gq,m which minimizes e2pSppq1, . . . , qdqq
over Gq,m.

3. Return q “ pq1, . . . , qsq.

(cf. [4, Algorithm 4.3])

It is to mention that this algorithm terminates after finitely many steps
as |Gq,m| “ qm ´ 1, (cf. [4, p. 1905]).

We can now estimate the worst-case error for integration in Hwal,s,β,γ

using a polynomial lattice rule obtained by the above algorithm at every
intermediate step.

Theorem 5.9. Let p be an irreducible polynomial over Fq with degppq “
m P N and assume that q˚ :“ pq˚1 , . . . , q

˚
s q P G

s
q,m are the polynomials

generated by the component-by-component (CBC) construction. Then,
for all d P t1, . . . , su and for all 1{β ă λ ď 1 the following inequality
holds:

e2qm,dpSppq˚1 , . . . , q˚dqq ď
1

pqm ´ 1q
1
λ

d
ź

j“1

`

1` µpβλqγλj
˘

1
λ ,

where µ is defined as in Lemma 2.16.

(cf. [4, Theorem 4.4])

Proof. We recall that in (31) it has already been shown that rpβ,γ,kqλ “
rpβλ,γλ,kq.

We begin with the proof by looking at the congruence

trmpkqq
˚
1 “ trmpkq ” 0 pmod pq, (37)
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where k is the associated polynomial to k P N. It is clear that every solution
of (37) has to be a multiple of qm, i.e. k “ lqm, l P N, as degppq “ m ą

degptrmpkqq. Hence, for d “ 1 we obtain

e2qm,1pSpp1qq
Lemma 5.7
“

ÿ

kPD˚p,1

rpβ, γ1, kq “
8
ÿ

l“1

rpβ, γ1, lq
m
q.

Let 1{β ă λ ď 1. Applying Jensen’s inequality (see (29)) and using the
identity given in the proof of Lemma 4.14, Equation (26) yields

e2qm,1pSpp1qq ď

˜

8
ÿ

l“1

rpβ, γ1, lq
m
q
λ

¸
1
λ

“

˜

8
ÿ

l“1

rpβλ, γλ1 , lq
m
q

¸
1
λ

“

ˆ

1

qβλm
γλ1µpβλq

˙
1
λ

1ăβλ
ď pqm ´ 1q´

1
λ
`

1` µpβλqγλ1
˘

1
λ .

Thus, the assertion is true for d “ 1.

For the rest of the proof we adhere to the proof of [4, Theorem 4.4]. Let
q˚k :“ pq˚1 , . . . , q

˚
kq denote the vector consisting of the first k polynomials

obtained from Algorithm 5.8 and assume that for some d P t1, . . . , s´ 1u we
have

e2qm,d pSppq˚dqq ď
1

pqm ´ 1q
1
λ

d
ź

j“1

`

1` µpβλqγλj
˘

1
λ , (38)

1{β ă λ ď 1. We now consider Sppq˚d, qd`1q for some arbitrary qd`1 P Gq,m,
where

pq˚d, qd`1q “ pq
˚
1 , . . . , q

˚
d, qd`1q .
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Using Lemma 5.7 again we find that

e2qm,d`1pSppq˚d, qd`1qq “
“

ÿ

kPD˚
p,pq˚

d
,qd`1q

rpβ, pγ, γd`1q,kq

“
ÿ

pk,kd`1qPNd`1
0 zt0u

trmpk,kd`1q¨pq
˚
d ,qd`1q”0 pmod pq

rpβ,γ,kq rpβ, γd`1, kd`1q

“
ÿ

kPNd0zt0u
trmpkq¨q

˚
d”0 pmod pq

rpβ,γ,kq

loooooooooooooooomoooooooooooooooon

kd`1“0

`

8
ÿ

kd`1“1

rpβ, γd`1, kd`1q
ÿ

kPNd0
trmpkq¨q

˚
d”´trmpkd`1qqd`1 pmod pq

rpβ,γ,kq

looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

kd`1‰0

Lemma 5.7
“ e2qm,dpSppq˚dqq ` θpqd`1q, (39)

where we define θpqd`1q as the double-sum (i.e. the case where kd`1 ‰ 0) in
the above equation. Since we choose q˚d`1 as a minimizer of e2qm,d`1pSppq˚d, ¨qq
overGq,m and as in (39) only θ is dependent on q˚d`1, it follows that θλpq˚d`1q ď
θλpqd`1q for all qd`1 P Gq,m and all λ P p1{β, 1s. Consequently,

θpq˚d`1q ď

˜

1

qm ´ 1

ÿ

qd`1PGq,m

θλpqd`1q

¸
1
λ

. (40)

After applying Jensen’s inequality twice we get

θλpqd`1q ď
8
ÿ

kd`1“1

rpβλ, γλd`1, kd`1q
ÿ

kPNd0
trmpkq¨q

˚
d”´trmpkd`1qqd`1 pmod pq

rpβλ,γλ,kq.

(41)
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Averaging θλp¨q over Gq,m yields

1

qm ´ 1

ÿ

qd`1PGq,m

θλpqd`1q

p41q

ď
1

qm ´ 1

ÿ

qd`1PGq,m

˜

8
ÿ

kd`1“1
qm|kd`1

rpβλ, γλd`1, kd`1q
ÿ

kPNd0
trmpkq¨q

˚
d”0 pmod pq

rpβλ,γλ,kq

`

8
ÿ

kd`1“1
qm-kd`1

rpβλ, γλd`1, kd`1q
ÿ

kPNd0
trmpkq¨q

˚
d”´trmpkd`1qqd`1 pmod pq

rpβλ,γλ,kq

¸

“: Σ1 ` Σ2. (42)

We notice that each summand in Σ1 is independent of qd`1 and hence we
obtain

Σ1 “

8
ÿ

kd`1“1
qm|kd`1

rpβλ, γλd`1, kd`1q
ÿ

kPNd0
trmpkq¨q

˚
d”0 pmod pq

rpβλ,γλ,kq

p26q
“

µpβλqγλd`1
qβλm

ÿ

kPNd0
trmpkq¨q

˚
d”0 pmod pq

rpβλ,γλ,kq. (43)

For the simplification of Σ2 we observe that qd`1 ‰ 0 and trmpkd`1q ‰ 0
as qm - kd`1 in Σ2. Moreover, p is an irreducible polynomial neither dividing
trmpkd`1q nor qd`1. Thus, p does not divide trmpkd`1qqd`1. Therefore we have

ÿ

qd`1PGq,m

ÿ

kPNd0
trmpkq¨q

˚
d”´trmpkd`1qqd`1 pmod pq

rpβλ,γλ,kq

“
ÿ

kPNd0
trmpkq¨q

˚
dı0 pmod pq

rpβλ,γλ,kq,

which leads to the following estimation of Σ2:
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Σ2 “
1

qm ´ 1

8
ÿ

kd`1“1
qm-kd`1

rpβλ, γλd`1, kd`1q
ÿ

kPNd0
trmpkq¨q

˚
dı0 pmod pq

rpβλ,γλ,kq

ď
1

qm ´ 1

˜

ÿ

kPNd0

rpβλ,γλ,kq ´
ÿ

kPNd0
trmpkq¨q

˚
d”0 pmod pq

rpβλ,γλ,kq

¸

ˆ

˜

8
ÿ

kd`1“1

rpβλ, γλd`1, kd`1q

¸

Lemma 2.16
“

µpβλqγλd`1
qm ´ 1

˜

d
ź

j“1

`

1` µpβλqγλj
˘

´
ÿ

kPNd0
trmpkq¨q

˚
d”0 pmod pq

rpβλ,γλ,kq

¸

.

(44)

As an intermediary summary we state what we have shown so far:

θpq˚d`1q
p40q

ď

˜

1

qm ´ 1

ÿ

qd`1PGq,m

θλpqd`1q

¸
1
λ

p42q

ď pΣ1 ` Σ2q
1
λ

p43q,p44q

ď

˜

µpβλqγλd`1
qβλm

ÿ

kPNd0
trmpkq¨q

˚
d”0 pmod pq

rpβλ,γλ,kq `
µpβλqγλd`1
qm ´ 1

ˆ

´

d
ź

j“1

`

1` µpβλqγλj
˘

´
ÿ

kPNd0
trmpkq¨q

˚
d”0 pmod pq

rpβλ,γλ,kq
¯

¸
1
λ

“
µ

1
λ pβλqγd`1

pqm ´ 1q
1
λ

˜

ÿ

kPNd0
trmpkq¨q

˚
d”0 pmod pq

rpβλ,γλ,kq
´qm ´ 1

qβλm
´ 1

¯

`

d
ź

j“1

`

1` µpβλqγλj
˘

¸
1
λ

ď
µ

1
λ pβλqγd`1

pqm ´ 1q
1
λ

d
ź

j“1

`

1` µpβλqγλj
˘

1
λ ,
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as βλ ą 1.

Using this inequality on (39) and exploiting the hypothesis in (38) finally
gives

e2qm,d`1pSppq˚dqq
p39q
“ e2qm,dpSppq˚dqq ` θpq˚d`1q
p38q

ď
1

pqm ´ 1q
1
λ

d
ź

j“1

`

1` µpβλqγλj
˘

1
λ

´

1` µ
1
λ pβλqγd`1

¯

ď
1

pqm ´ 1q
1
λ

d
ź

j“1

`

1` µpβλqγλj
˘

1
λ
`

1` µpβλqγλd`1
˘

1
λ ,

where, in the last step, we used Jensen’s inequality on the last factor. This
completes the proof for the d` 1-case and the result follows by induction for
all d P t1, . . . , su.

The above theorem allows us to prove various statements concerning the
worst-case error for polynomial lattice point sets gained from the CBC con-
struction for which we had only existence results in the general case, i.e. in
Section 4.2, or, more precisely, in Theorem 4.15 and Corollaries 4.16 and
4.18.

Corollary 5.10. Let p P Fqrxs be an irreducible polynomial with degppq “
m P N. Furthermore, let q˚ “ p1, q˚2 , . . . , q

˚
s q P G

s
q,m be the s-dimensional

vector of polynomials obtained from the component-by-component con-
struction, i.e. Algorithm 5.8. Then, the following assertions are true:

(i) For all δ P p0, β´1
2
s we have

eqm,spSppq˚qq ď cs,β,γ,δ pq
m
q
´
β
2
`δ ,

where

cs,β,γ,δ :“ 2
β
2
´δ

s
ź

j“1

ˆ

1` γ
1

β´2δ

j µ

ˆ

β

β ´ 2δ

˙˙

β
2
´δ

.

(ii) Under the assumption that

8
ÿ

j“1

γ
1

β´2δ

j ă 8
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it follows that
cs,β,γ,δ ď c8,β,γ,δ ă 8

and hence
eqm,spSppq˚qq ď c8,β,γ,δ pq

m
q
´
β
2
`δ .

(iii) Suppose

A :“ lim sup
sÑ8

řs
j“1 γj

log s
ă 8.

Then, there exists a constant cη, which is only dependent on η ą 0,
such that

eqm,spSppq˚qq ď cηs
µpβqpA`ηq

2 q´
m
2

for all η ą 0.

(cf. [4, Corollary 4.5])

Proof. As in the proof of [4, Corollary 4.5] we set λ :“ 1
β´2δ

to find that

1

β
ă

1

β ´ 2δ
loomoon

“λ

ď
1

β ´ β ` 1
“ 1.

Thus, we may apply Theorem 5.9 with this value for λ, giving

eqm,spSppq˚qq ď pqm ´ 1q´
1
2λ

s
ź

j“1

`

1` γλj µpβλq
˘

1
2λ

ď

ˆ

qm

2

˙´ 1
2λ

s
ź

j“1

`

1` γλj µpβλq
˘

1
2λ

“ 2
β
2
´δ

s
ź

j“1

ˆ

1` γ
1

β´2δ

j µ

ˆ

β

β ´ 2δ

˙˙
β
2
´δ

pqmq´
´β
2
`δ

“ cs,β,γ,δ pq
m
q
´
β
2
`δ

and hence the first assertion follows.

The proofs of the remaining items are identical to those of Corollaries
4.16 and 4.18 for this special setting of parameters λ and δ and, naturally,
one has to refer to item (i) instead of Theorem 4.15.
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From items (ii) and (iii) we learn that, by employing the CBC method,
we may exploit strong tractability and tractability of integration in Hwal,s,β,γ

respectively.

5.1.2 A Korobov type construction

The second construction method for polynomial lattice point sets which is
going to be presented in this thesis is that of a Korobov type. The common
feature inherent in such algorithms is that one picks an element of a specific
domain (e.g. integers) and forms a vector consisting of successive powers of
this element (cf. [5, p. 306]).

For the construction of polynomial lattice point sets we consider an irre-
ducible polynomial p P Fqrxs of degree m P N as well as another polynomial
q P Gq,m and define the lattice point q “ pq1, . . . , qsq by setting

qj ” qj´1 pmod pq,

where degpqjq ă m for all 1 ď j ď s. Most of the time, however, we will
adhere to the more convenient notation

vspqq ”
`

1, q, q2, . . . , qs
˘

pmod pq,

(cf. [4, p. 1908]).

Algorithm 5.11 (Korobov type construction). Let all parameters nec-
essary to define the weighted Hilbert space Hwal,s,β,γ be given and let
s ě 2. Then:

1. Choose an irreducible polynomial p P Fqrxs with degppq “ m P N.

2. Find q̃ P Gq,m which minimizes e2qm,s pSppvspqqqq over Gq,m.

(cf. [4, Algorithm 4.6])

Remark 5.12. Similarly to [5, Remarks 10.27 and 10.33] we notice that, in
comparison to Algorithm 5.8, we need to try |Gq,m| “ qm´1 polynomials for
coming up with a point set of the above kind, while this is done in each of
the s´ 1 iteration steps occuring in the CBC construction.

We may estimate the worst-case error for integration in Hwal,s,β,γ using
point sets obtained by the above algorithm as follows:
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Theorem 5.13. Let s ě 2 and let p P Fqrxs be irreducible with degppq “
m P N. For any q̃ obtained by Algorithm 5.11 we have

e2qm,spSppvspq̃qqq ď
s

qm ´ 1

s
ź

j“1

`

1` γjµpβq
˘

,

where µpβq is defined in Lemma 2.16.

(cf. [4, Theorem 4.7])

Proof. (Taken from [4, Theorem 4.7])

We begin by defining Msppq as the average of the square worst-case error
using a Korobov type polynomial lattice, i.e.

Msppq :“
1

qm ´ 1

ÿ

qPGq,m

e2qm,spSppvspqqqq.

As q̃ is a minimizer of e2qm,spSppvsp¨qqq over Gq,m it immediately follows that

e2qm,spSppvspq̃qqq ďMsppq. (45)

Thus, all that remains to be done is to estimate Msppq appropriately. To this
end, we simplify as follows

Msppq
Lemma 5.7
“

1

qm ´ 1

ÿ

qPGq,m

ÿ

kPD˚
p,vspqq

rpβ,γ,kq

“
1

qm ´ 1

ÿ

qPGq,m

ÿ

kPNs0zt0u
trmpkq¨vspqq”0 pmod pq

rpβ,γ,kq

“
1

qm ´ 1

ÿ

kPNs0zt0u

rpβ,γ,kq
ÿ

qPGq,m
trmpkq¨vspqq”0 pmod pq

1, (46)

leaving us with the task of determining (or estimating) the number of solu-
tions of the congruence

trmpk1q ` trmpk2qq` ¨ ¨ ¨ ` trmpksqq
s´1

” 0 pmod pq (47)
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for each pk1, . . . , ksq P Ns
0zt0u.

First of all, we consider the case where k “ qml with l P Ns
0zt0u. Since

trmpkq “ 0, any q P Gq,m is a solution to (47). Secondly, if k1 is not a multiple
of qm and the remaining kj, 2 ď j ď s, are, we cannot find any solution at all.
In any other case, i.e. kj “ k˚j ` ljq

m with 0 ď k˚j ă qm, pk˚2 , . . . , k
˚
s q ‰ 0, and

lj ě 0 for all j P t2, . . . , su, there are at most s ´ 1 q P Gq,m satisfying (47).
To facilitate notation we recall that, for n P Nd

0, the maximum value of all
of its coordinates is denoted by }n}8, where d stands for any finite dimension.

Considering this discussion in (46) yields

Msppq ď
1

qm ´ 1

ÿ

lPNs0zt0u

rpβ,γ, qmlq
ÿ

qPGq,m

1`
s´ 1

qm ´ 1

ˆ

˜

8
ÿ

k1“0

ÿ

pl2,...,lsqPNs´1
0

ÿ

pk˚2 ,...,k
˚
s qPN

s´1
0 zt0u

}pk˚2 ,...,k
˚
s q}8ăq

m

rpβ, γ1, k1q
s
ź

j“2

rpβ, γj, k
˚
j ` q

mljq

¸

.

The identities
ÿ

lPNs0

rpβ,γ, qmlq “
s
ź

j“1

ˆ

1` γj
µpβq

qmβ

˙

and

ÿ

lPNs´1
0

ÿ

k˚PNs´1
0 zt0u

}k˚}8ăqm

rpβ,γ,k˚ ` qmlq “
s´1
ź

j“1

p1` γjµpβqq ´
s´1
ź

j“1

ˆ

1` γj
µpβq

qmβ

˙

have already occurred in Lemma 4.14 in (26) and (27). Applying this to the
respective terms and Lemma 2.16 to the sum over k1 allows us to simplify
further

Msppq ď
s
ź

j“1

ˆ

1` γj
µpβq

qmβ

˙

´ 1`
s´ 1

qm ´ 1
p1` γ1µpβqq

ˆ

˜

s
ź

j“2

p1` γjµpβqq ´
s
ź

j“2

ˆ

1` γj
µpβq

qmβ

˙

¸

.

Once again, we need to cite Lemma 4.14, but now Equation (28), in which
one can see that

s
ź

j“1

ˆ

1` γj
µpβq

qmβ

˙

´ 1 ď
1

qm

s
ź

j“1

p1` γjµpβqq.



90 5.1 Polynomial lattice point sets

Thus, we finally arrive at

Msppq ď
1

qm

s
ź

j“1

p1` γjµpβqq `
s´ 1

qm ´ 1
p1` γ1µpβqq

s
ź

j“2

p1` γjµpβqq

ď
s

qm ´ 1

s
ź

j“1

p1` γjµpβqq.

Inserting this into the inequality given in (45) completes the proof.

We immediately notice that, compared to worst-case error for point sets
gained from the CBC construction method, the dimension s appears as a
stand-alone factor in the above theorem. Thus, we are only able to present
a reduced version of Corollary 5.10.

Corollary 5.14. Let p be an irreducible polynomial over Fq with degppq “
m P N and let q̃ P Gq,m be the polynomial obtained from Algorithm 5.11.
Then, the following assertions are true:

(i) For all δ P
`

0, β´1
2

‰

we have

eqm,spSppvspq̃qqq ď cs,β,γ,δs
β
2
´δ
pqmq´

β
2
`δ ,

where

cs,β,γ,δ :“ 2
β
2
´δ

s
ź

j“1

ˆ

1` γ
1

β´2δ

j µ

ˆ

β

β ´ 2δ

˙˙

β
2
´δ

.

(ii) Suppose

A :“ lim sup
sÑ8

řs
j“1 γj

log s
ă 8.

Then, there exists a constant cη which solely dependens on η ą 0,
such that

eqm,spSppvspq̃qqq ď cηs
1`µpβqpA`ηq

2 q´
m
2 .

Hence, the worst-case error depends at most polynomially on the
dimension s.

(cf. [4, Corollary 4.8])
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Proof. (Taken from [4, Corollary 4.8])

(i) We consider the dependency of the worst-case error on the parameters
β and γ by writing eqm,spβ,γ,Sppvspqqqq. Furthermore, we define λ :“
1{pβ ´ 2δq. Note that 1{β ă λ ď 1. Using Lemma 5.7 and applying
Jensen’s inequality gives

e2qm,spβ,γ,Sppvspqqqq ď
ÿ

kPD˚
p,vspqq

rpβ,γ,kq

ď

¨

˝

ÿ

kPD˚
p,vspqq

rpβλ,γλ,kq

˛

‚

1
λ

“

´

e2qm,s
`

βλ,γλ,Sppvspqqq
˘

¯
1
λ
.

Theorem 5.13 now implies that there exists a q˚ P Gq,m such that

e2qm,s
`

βλ,γλ,Sppvspq˚qq
˘

ď
s

qm ´ 1

s
ź

j“1

`

1` γλj µpβλq
˘

ď
2s

qm

s
ź

j“1

`

1` γλj µpβλq
˘

.

Since q̃ is a minimizer of the square worst-case error, we obtain

eqm,s pβ,γ,Sppvspq̃qqq ď
´

e2
`

βλ,γλ,Sppvspq̃qq
˘

¯
1
2λ

“

ˆ

2s

qm

˙

β
2
´δ s

ź

j“1

ˆ

1` γ
1

β´2δ

j µ

ˆ

β

β ´ 2δ

˙˙

β
2
´δ

.

(ii) The proof of this result follows exactly the same pattern as that of
Corollary 4.18 and will therefore be omitted.

Finally, we compare the results for the two construction methods which
were introduced in this section. Although the Korobov type construction
takes less time to come up with a polynomial lattice (see Remark 5.12), we
learn from Corollary 5.14 that, in this case, the worst-case error differs by
a positive power of s, compared to that obtained by the CBC construction.
More importantly, however, this factor deprives us of the possibility to exploit
strong tractability if

ř8

j“1 γ
λ
j ă 8. So, in principle, we may say that Algo-

rithm 5.8 yields better results than Algorithm 5.11, (cf. [5, Remark 10.33]
and [4, p. 1911]).
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5.2 The construction method by Niederreiter

This method, too, uses formal Laurent series for the determination of the
generating matrices. In this approach, however, one uses different irreducible
polynomials as denominators instead of concentrating on the variation of the
numerator, compared to the construction of polynomial lattice point sets.
The following construction scheme was introduced by H. Niederreiter in [14]
and can also be found in [5, p. 264].

Let p1, . . . , ps P Fqrxs be monic, irreducible and mutually distinct with
degppjq “ ej P N for all 1 ď j ď s. Furthermore, for 1 ď j ď s and all
1 ď i ď m we consider

xk

pjpxqi
“

8
ÿ

r“0

apjqpi, k, rqx´r´1

for all integers 0 ď k ă ej and set

c
pjq
i,r “ apjqpQ` 1, k, rq P Fq,

where 0 ď r ď m´1 and the integers Q and 0 ď k ă ej are chosen such that

i´ 1 “ Qej ` k

holds. Subsequently, we collect the coefficients c
pjq
i,r to form the generating

matrices
Cj “

´

c
pjq
i,r

¯

i“1,...,m
r“0,...,m´1

,

1 ď j ď s.

Before we are able to proceed further we will have to work ourselves
through a series of lemmas, which aim at showing another bound for the
worst-case error. As a reward, this will vastly facilitate the estimation of the
worst-case error employing digital nets of the above kind.

Lemma 5.15. Let P be a digital pt,m, sq-net over Fq whose generating
matrices C1, . . . , Cs are non-singular. Furthermore, we define

rds :“ t1, . . . , du, d P N,

and

Dqm :“

#

k P Ns
0 : }k}8 ă qm and

s
ÿ

j“1

CJj ϕpkjq “ 0

+
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and set D˚qm :“ Dqmzt0u.

Then we have

ÿ

uĹrss

¨

˝

ÿ

kPD˚qm

ź

jPu

rpβ, γj, kjq

˛

‚

¨

˝

ź

jPrsszu

γj
µpβq

qmβ

˛

‚

ď
1

qmβ

s
ź

j“1

p1` 2γjµpβqq ´
s
ź

j“1

ˆ

1` γj
µpβq

qmβ

˙

` 1.

(cf. [3, p. 286])

Proof. (Adapted from [3, pp. 285f.]).

Let u “ tu1, . . . , ueu be a proper subset of rss, i.e. e ă s, and consider
ku1 , . . . , kue P t0, . . . , q

m ´ 1u fixed. Moreover, let tj1, . . . , js´|u|u :“ rsszu.

Thus, the condition k P Dqm is equivalent to

CJj1ϕpkj1q ` ¨ ¨ ¨ ` C
J
js´|u|

ϕpkjs´|u|q “ b,

where b “ ´CJu1ϕpku1q ´ ¨ ¨ ¨ ´ CJueϕpkueq P Fmq . For an appropriate vector
d “ dpkj1 , . . . , kjs´|u|´1

q we may write

CJjs´|u|ϕpkjs´|u|q “ d.

The latter equation admits of qmps´|u|´1q right handsides, for each of which
there exists exactly one solution, since Cjs´|u| is regular by assumption. Thus,
for fixed ku1 , . . . , kue , the maximum number of k P Dqm is bounded by
qmps´|u|´1q and hence

ÿ

kPD˚qm

ź

jPu

rpβ, γj, kjq ď qmps´|u|´1q
ź

jPu

˜

qm´1
ÿ

k“0

rpβ, γj, kq

¸

´ 1

Lemma 2.16
ď qmps´|u|´1q

ź

jPu

p1` γjµpβqq ´ 1.

Note that we needed to substract 1, as we have allowed k to be the zero
vector in the above discussion. Using this inequality and the fact that β ą 1



94 5.2 The construction method by Niederreiter

we obtain

ÿ

uĹrss

¨

˝

ÿ

pk1,...,ksqPD˚qm

ź

jPu

rpβ, γj, kjq

˛

‚

¨

˝

ź

jPrsszu

γj
µpβq

qmβ

˛

‚

ď
ÿ

uĹrss

˜

qmβps´|u|´1q
ź

jPu

p1` γjµpβqq ´ 1

¸

¨

˝

ź

jPrsszu

γj
µpβq

qmβ

˛

‚

“
ÿ

uĹrss

qmβps´|u|´1q
ź

jPu

p1` γjµpβqq
ź

jPrsszu

γj
µpβq

qmβ
´

ÿ

uĎrss

ź

jPrsszu

γj
µpβq

qmβ
` 1

ď
1

qmβ

ÿ

uĎrss

ź

jPu

p1` γjµpβqq
ź

jPrsszu

γjµpβq ´
s
ź

j“1

ˆ

1` γj
µpβq

qmβ

˙

` 1

“
1

qmβ

s
ź

j“1

p1` 2γjµpβqq ´
s
ź

j“1

ˆ

1` γj
µpβq

qmβ

˙

` 1.

The proof of the next lemma will be omitted, as its result is more of a
technical nature and does hardly provide any valuable information concerning
digital nets.

Lemma 5.16. Let b ą 1 be a real number and let k, t0 P N. Then the
following inequality holds

8
ÿ

t“t0

ˆ

t` k ´ 1
k ´ 1

˙

b´t ď b´t0
ˆ

t0 ` k ´ 1
k ´ 1

˙ˆ

1´
1

b

˙´k

.

Proof. See [7, Lemma 6].

This result comes in handy for the proof of the following lemma.

Lemma 5.17. Let u “ tu1, . . . , ueu be a non-empty subset of rss and let
P be a digital pt,m, sq-net over Fq with generating matrices C1, . . . , Cs.
Furthermore, assume that the projection of P onto the coordinates in u
constitutes a digital ptu,m, |u|q-net, for some tu ď m. Then

Bpuq ď
ˆ

q ´ 1

qβ´1 ´ 1

˙|u|
2pm´ tu ` 2q|u|´1

qβpm´tu`1´2|u|q

ź

jPu

γj,
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where Bpuq is defined by

Bpuq :“
qm´1
ÿ

ku1 ,...,kue“0

CJu1ϕpku1 q`¨¨¨`C
J
ue
ϕpkue q“0

ź

jPu

rpβ, γj, kjq.

(cf. [3, p. 287])

Proof. Without loss of generality we choose u “ res and obtain

Bpuq “
m´1
ÿ

a1,...,ae“0

q´βpa1`¨¨¨`aeq
e
ź

j“1

γj

qa1`1´1
ÿ

k1“qa1

¨ ¨ ¨

qae`1´1
ÿ

ke“qae
looooooooomooooooooon

CJ1 ϕpk1q`¨¨¨`C
J
e ϕpkeq“0

1, (48)

as we have already done earlier in the proof of Lemma 2.16 or as can be seen
similarly in [3, p. 286].

The remaining part considers the proof of [2, Lemma 7], where a different
result is shown, but the main ideas relate, nevertheless. Next, we aim at
reformulating the condition

ře
j“1C

J
j ϕpkjq “ 0. To this end, let cJj,i be the

ith row vector of the generating matrix Cj, 1 ď i ď m and 1 ď j ď s.
Additionally, we denote the lth q-adic digit of kj by κj,l. Thus, the above-
mentioned condition is equivalent to

0 “ c1,1ϕ1pκ1,0q` ¨ ¨ ¨ `c1,a1ϕ1pκ1,a1´1q`c1,a1`1ϕ1pκ1,a1q

`

c2,1ϕ1pκ2,0q` ¨ ¨ ¨ `c2,a2ϕ1pκ2,a2´1q`c2,a2`1ϕ1pκ2,a2q

`
...

`

ce,1ϕ1pκe,0q` ¨ ¨ ¨ `ce,aeϕ1pκe,ae´1q`ce,ae`1ϕ1pκe,aeq. (49)

Since, by assumption, the projection of the digital net P onto the coordinates
in u is a digital ptu,m, |u|q-net, it follows from Lemma 3.5 that the vectors

c1,1, . . . , c1,a1`1, c2,1, . . . , ce,1, . . . , ce,ae`1
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are linearly independent, provided that

e
ÿ

i“1

pai ` 1q ď m´ tu,

which implies that, with this restraint put on a1, . . . , ae, a non-zero solution
k1, . . . , ke of (49) cannot exist. Consequently, we only need to investigate the
case where

e
ÿ

i“1

ai ě m´ tu ´ e` 1.

For this reason, let

A :“ pc1,1, . . . , c1,a1 , c2,1, . . . , ce,1, . . . , ce,aeq P Fm̂ pa1`¨¨¨`aeq
q ,

fκ1,a1 ,...,κe,ae :“ ´
`

c1,a1`1ϕ1pκ1,a1q ` c2,a2`1ϕ1pκ2,a2q ` ¨ ¨ ¨

` ¨ ¨ ¨ ` ce,ae`1ϕ1pκe,aeq
˘

P Fmq
and

k :“
`

ϕ1pκ1,0q, . . . , ϕ1pκ1,a1´1q, ϕ1pκ2,0q, . . .

. . . , ϕ1pκe,0q, . . . , ϕ1pκe,ae´1q
˘J

P Fa1`¨¨¨`aeq .

Now we can rewrite (49) in the following way:

Ak “ fκ1,a1 ,...,κe,ae . (50)

From Lemma 3.5 we know that for the rank of the matrix A, we denote it
by rankpAq, we have

rankpAq “ a1 ` ¨ ¨ ¨ ` ae, if a1 ` ¨ ¨ ¨ ` ae ď m´ tu

and

rankpAq ě m´ tu

otherwise.

Thus, if we denote the space of solutions of the linear system of equations
Ak “ 0 by L, it follows that

dimpLq “ 0, if a1 ` ¨ ¨ ¨ ` ae ď m´ tu

and

dimpLq ď a1 ` ¨ ¨ ¨ ` ae ´m` tu
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in the other case. Hence,

#
 

k P Fa1`¨¨¨`aeq : Ak “ fκ1,a1 ,...,κe,ae
(

ď

"

1 if
ře
j“1 aj ď m´ tu,

q
ře
j“1 aj´m`tu else.

This finally allows us to determine an upper bound for Bpuq, based on Equa-
tion (48):

Bpuq “
m´1
ÿ

a1,...,ae“0

q´βpa1`¨¨¨`aeq
e
ź

j“1

γj

qa1`1´1
ÿ

k1“qa1

¨ ¨ ¨

qae`1´1
ÿ

ke“qae
looooooooomooooooooon

CJ1 ϕpk1q`¨¨¨`C
J
e ϕpkeq“0

1

“

m´1
ÿ

a1,...,ae“0

q´βpa1`¨¨¨`aeq
e
ź

j“1

γj

q´1
ÿ

κ1,a1 ,...,κe,ae“1

ÿ

kPFa1`¨¨¨`aeq

Ak“fκ1,a1 ,...,κe,ae

1

ď

m´1
ÿ

a1,...,ae“0
a1`¨¨¨`aeěm´tu´e`1

q´βpa1`¨¨¨`aeq
e
ź

j“1

γj

q´1
ÿ

κ1,a1 ,...,κe,ae“1

1

ˆ

"

1 if
ře
l“1 al ď m´ tu,

q
ře
l“1 al´m`tu if

ře
l“1 al ą m´ tu

“ pq ´ 1qe
m´1
ÿ

a1,...,ae“0
m´tu´e`1ďa1`¨¨¨`aeďm´tu

q´βpa1`¨¨¨`aeq
e
ź

j“1

γj

`pq ´ 1qe
m´1
ÿ

a1,...,ae“0
a1`¨¨¨`aeąm´tu

qp1´βqpa1`¨¨¨`aeq´m`tu
e
ź

j“1

γj

“ :
´

pq ´ 1qe
e
ź

j“1

γj

¯´

Σ1 ` Σ2

¯

. (51)

We can rewrite Σ2 as follows:

Σ2 “ qtu´m
m´1
ÿ

a1,...,ae“0
a1`¨¨¨`aeąm´tu

q´pβ´1qpa1`¨¨¨`aeq

“ qtu´m
epm´1q
ÿ

l“m´tu`1

q´lpβ´1q
m´1
ÿ

a1,...,ae“0
a1`¨¨¨`ae“l

1.

Since the number of non-negative integer solutions pa1, . . . , aeq to the equa-
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tion a1 ` ¨ ¨ ¨ ` ae “ l is given by

ˆ

l ` e´ 1
e´ 1

˙

, we obtain

Σ2 ď qtu´m
8
ÿ

l“m´tu`1

ˆ

l ` e´ 1
e´ 1

˙

q´lpβ´1q

Lemma 5.16
ď qtu´mq´pβ´1qpm´tu`1q

ˆ

m´ tu ` e
e´ 1

˙ˆ

qβ´1 ´ 1

qβ´1

˙´e

“ q´βpm´tu`1q`pβ´1qe`1
`

qβ´1 ´ 1
˘´e

ˆ

m´ tu ` e
e´ 1

˙

ď q´βpm´tu`1´2eq
`

qβ´1 ´ 1
˘´e

ˆ

m´ tu ` e
e´ 1

˙

,

and since for e ě 2 we have (note that the inequality below is trivially fulfilled
for e “ 1)
ˆ

m´ tu ` e
e´ 1

˙

“
m´ tu ` 2

1
¨
m´ tu ` 3

2
¨ ¨ ¨

m´ tu ` e

e´ 1
ď pm´ tu ` 2qe´1 ,

we finally arrive at

Σ2 ď q´βpm´tu`1´2eq
`

qβ´1 ´ 1
˘´e

pm´ tu ` 2qe´1 . (52)

Now we turn to the estimation of Σ1 as given in (51), i.e.

Σ1 “

m´1
ÿ

a1,...,ae“0
m´tu´e`1ďa1`¨¨¨`aeďm´tu

q´βpa1`¨¨¨`aeq.

In order to determine an upper bound for this expression, we need to distin-
guish between two cases, beginning with that where m´tu ą e´1. Hence, by
employing the same quantitative arguments concerning non-negative integer
solutions to a1 ` ¨ ¨ ¨ ` ae “ l as we have used above, we get

Σ1 “

m´tu
ÿ

l“m´tu´e`1

q´βl
m´1
ÿ

a1,...,ae“0
a1`¨¨¨`ae“l

1

ď

8
ÿ

l“m´tu´e`1

ˆ

l ` e´ 1
e´ 1

˙

q´βl

Lemma 5.16
ď q´βpm´tu´e`1q

ˆ

m´ tu
e´ 1

˙ˆ

qβ

qβ ´ 1

˙e

ď q´βpm´tu´2e`1q
`

qβ´1 ´ 1
˘´e

ˆ

m´ tu ` e
e´ 1

˙

ď q´βpm´tu´2e`1q
`

qβ´1 ´ 1
˘´e

pm´ tu ` 2qe´1 ,
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where the last inequality has already been shown in the estimation of Σ2.

If m´ tu ď e´ 1 we can do the following, based on some facts previously
used within this proof:

Σ1 ď

8
ÿ

l“0

q´βl
ˆ

l ` e´ 1
e´ 1

˙

Lemma 5.16
ď 1` q´β

ˆ

e
e´ 1

˙ˆ

qβ

qβ ´ 1

˙e

“

`

qβ ´ 1
˘e
` qβpe´1qe

pqβ ´ 1qe

ď
qβe

`

1` eq´β
˘

pqβ´1 ´ 1qe
. (53)

It is rather obvious that

1` eq´β ď pm´ tu ` 2qe´1 (54)

holds for e “ 2. Now, suppose the above holds for some 2 ď e ă s. Then we
obtain

1` pe` 1qq´β ď pm´ tu ` 2qe´1 ` q´β

ď pm´ tu ` 2qe´1 ` 1

ď 2 pm´ tu ` 2qe´1

ď pm´ tu ` 2qe

and therefore (54) holds for all 2 ď e ď s. Together with the fact that
e´ 1 ě m´ tu implies e ď ´m` tu ´ 1` 2e, it follows from (53) that

Σ1 ď q´βpm´tu´2e`1q
`

qβ´1 ´ 1
˘´e

pm´ tu ` 2qe´1, (55)

as we have also obtained for e ´ 1 ă m ´ tu. For e “ 1 this result can be
easily derived from the definition of Σ1.

Inserting (54) and (52) into (51) finally gives

Bpuq ď
´

pq ´ 1qe
e
ź

j“1

γj

¯´

Σ1 ` Σ2

¯

ď

´

pq ´ 1qe
e
ź

j“1

γj

¯´

2q´βpm´tu`1´2eq
`

qβ´1 ´ 1
˘´e

pm´ tu ` 2qe´1
¯

and since e “ |u| the result follows.
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We are now in a position to find an upper bound for the worst-case
error for digital nets with regular generating matrices in terms of the quality
parameters of their projections, which were previously denoted by tu.

Lemma 5.18. Let P be a digital pt,m, sq-net over Fq generated by the
regular matrices C1, . . . , Cs P Fm̂ m

q . Under the assumption that for each
non-empty u Ď t1, . . . , su the projection of P on the coordinates in u
constitutes a ptu,m, |u|q-net for some integer 0 ď tu ď m, the worst-case
error for integration in Hwal,s,β,γ is bounded by

e2qm,spPq ď
1

qβm

¨

˝1`
ÿ

H‰uĎt1,...,su

qβtu
ź

jPu

`

qβ`1pm` 2qµpβqγj
˘

˛

‚.

(cf. [3, Lemma 4])

Proof. The most important steps of this proof can also be found in the proof
of [3, Lemma 4].

Once again, we use Theorem 4.12 to find that

e2qm,spPq “
ÿ

k“pk1,...,ksqPNs0zt0u
CJ1 ϕpk1q`¨¨¨`C

J
s ϕpksq“0

rpβ,γ,kq

and we notice that, if k is a multiple of qm, i.e. there exists an l P Ns
0zt0u

such that k “ qml, this always constitutes a solution to

CJ1 ϕpk1q ` ¨ ¨ ¨ ` C
J
s ϕpksq “ 0,

as ϕpkjq “ 0 for all 1 ď j ď s. On the other hand, if we have k “ k˚ ` qml,
where k˚ P Ns

0zt0u with all its entries bounded by qm ´ 1 and l P Ns
0, then

ϕpkq “ ϕpk˚q.

We recall that in Lemma 5.15 we have already defined

D˚qm :“

#

pk1, . . . , ksq P Ns
0zt0u : }k}8 ă qm and

s
ÿ

j“1

CJj ϕpkjq “ 0

+

and simplify in accordance to the above discussion:

e2qm,spPq “
ÿ

lPNs0zt0u

rpβ,γ, qmlq `
ÿ

kPD˚qm

ÿ

lPNs0

rpβ,γ,k` qmlq “ Σ1 ` Σ2. (56)
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From (26) we get that

Σ1 “

s
ź

j“1

ˆ

1` γj
µpβq

qmβ

˙

´ 1. (57)

The simplification and estimation of Σ2 involves a little more effort. First of
all, we fix an arbitrary j P rss and consider the jth component of l in the
innermost sum:

8
ÿ

l“0

rpβ, γj, kj ` q
mlq “ rpβ, γj, kjq `

8
ÿ

l“1

rpβ, kj ` γj, q
mlq

“ rpβ, γj, kjq `
8
ÿ

l“1

γjq
´βtlogqpkj`q

mlqu.

Since, by definition of D˚qm , we have that kj ă qm we obtain

8
ÿ

l“0

rpβ, γj, kj ` q
mlq

p26q
“ rpβ, γj, kjq ` γj

µpβq

qmβ
.

Inserting this identity into the definition of Σ2 yields

Σ2 “
ÿ

kPD˚qm

s
ź

j“1

˜

8
ÿ

l“0

rpβ, γj, kj ` q
mlq

¸

“
ÿ

kPD˚qm

s
ź

j“1

ˆ

rpβ, γj, kjq ` γj
µpβq

qmβ

˙

.

Now, we can rewrite the above as follows:

Σ2 “
ÿ

kPD˚qm

ÿ

uĎrss

˜

ź

jPu

rpβ, γj, kjq

¸

¨

˝

ź

jPrsszu

γj
µpβq

qmβ

˛

‚

“
ÿ

kPD˚qm

rpβ,γ,kq `
ÿ

kPD˚qm

ÿ

uĹrss

˜

ź

jPu

rpβ, γj, kjq

¸

¨

˝

ź

jPrsszu

γj
µpβq

qmβ

˛

‚

“
ÿ

kPD˚qm

rpβ,γ,kq `
ÿ

uĹrss

¨

˝

ÿ

kPD˚qm

ź

jPu

rpβ, γj, kjq

˛

‚

¨

˝

ź

jPrsszu

γj
µpβq

qmβ

˛

‚.

(58)
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We may, at this point, use Lemma 5.15 to determine an upper bound for the
second sum in (58):

ÿ

uĹrss

¨

˝

ÿ

kPD˚qm

ź

jPu

rpβ, γj, kjq

˛

‚

¨

˝

ź

jPrsszu

γj
µpβq

qmβ

˛

‚

p57q

ď
1

qmβ

s
ź

j“1

p1` 2γjµpβqq ´ Σ1

“
1

qmβ

´

1`
ÿ

H‰uĎrss

ź

jPu

p2µpβqγjq
¯

´ Σ1

ď
1

qmβ

¨

˝1`
ÿ

H‰uĎrss

qβ ´ 1

qβ
qβtu

ź

jPu

`

qβ`1pm` 2qµpβqγj
˘

˛

‚´ Σ1. (59)

In the following we draw our attention to the first sum in (58), i.e.

ÿ

kPD˚qm

rpβ,γ,kq “
qm´1
ÿ

k1,...,ks“0, }k}8‰0
CJ1 ϕpk1q`¨¨¨`C

J
s ϕpksq“0

rpβ, γ1, k1q ¨ ¨ ¨ rpβ, γs, ksq,

where k “ pk1, . . . , ksq. Since rpβ, γj, 0q “ 1 for any 1 ď j ď s and ϕp0q “ 0,
we may rearrange this sum in the following way, according to for which
indices 1 ď j ď s we have kj “ 0:

ÿ

kPD˚qm

rpβ,γ,kq “
ÿ

H‰uĎrss
u“tu1,...,ueu

qm´1
ÿ

ku1 ,...,kue“1

CJu1ϕpku1 q`¨¨¨`C
J
ue
ϕpkue q“0

ź

jPu

rpβ, γj, kjq.

For an arbitrary, non-empty subset u “ tu1, . . . , ueu of rss we define Bpuq as
in Lemma 5.17 and exploit the result stated therein to find that

ÿ

kPD˚qm

rpβ,γ,kq “
ÿ

H‰uĎrss

Bpuq

ď
ÿ

H‰uĎrss

ˆ

q ´ 1

qβ´1 ´ 1

˙|u|
2pm´ tu ` 2q|u|´1

qβpm´tu`1´2|u|q

ź

jPu

γj.

Since we have
q ´ 1

qβ´1 ´ 1
“ q1´β

qβpq ´ 1q

qβ ´ q
“ q1´βµpβq

and
2pm´ tu ` 2q|u|´1 ď pm´ tu ` 2q|u| ď pm` 2q|u|,
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it follows that
ÿ

kPD˚qm

rpβ,γ,kq ď
ÿ

H‰uĎrss

q´βpm´tu`1´2|u|q
ź

jPu

`

q1´βµpβqpm` 2qγj
˘

“
1

qpm`1qβ

ÿ

H‰uĎrss

qβtu
ź

jPu

`

qβ`1pm` 2qµpβqγj
˘

. (60)

As a summary, we obtain

e2qm,spPq
p56q
“ Σ1 ` Σ2

p58q,p59q,p60q

ď
1

qpm`1qβ

ÿ

H‰uĎrss

qβtu
ź

jPu

`

qβ`1pm` 2qµpβqγj
˘

`
1

qmβ

¨

˝1`
ÿ

H‰uĎrss

qβ ´ 1

qβ
qβtu

ź

jPu

`

qβ`1pm` 2qµpβqγj
˘

˛

‚

“
1

qmβ

¨

˝1`
ÿ

H‰uĎrss

qβtu
ź

jPu

`

qβ`1pm` 2qµpβqγj
˘

˛

‚,

which is exactly what we wanted to show.

Finally, we can reap the benefits of the hard work we have had proving
the preceding lemmas, as the task of providing an upper bound for the worst-
case error for digital nets constructed by Niederreiter’s method is a perfectly
easy one now.

Theorem 5.19. Let P be a digital pt,m, sq-net over Fq constructed by
Niederreiter’s method as introduced in the beginning of this section by
using the first s polynomials p1, . . . , ps from a list of monic and irreducible
polynomials over Fq ordered by their degree in a non-decreasing manner.
Then, the worst-case error for integration in Hwal,s,β,γ using P as sample
points is bounded by

e2qm,spPq ď
1

qmβ

s
ź

j“1

´

1` q2β`1
`

j logqpj ` qq
˘β
pm` 2qµpβqγj

¯

.

Moreover, if we have
8
ÿ

j“1

pj log jqβγj ă 8,
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then
e2qm,spPq ď cδ,q,β,γq

mpδ´βq

for any δ ą 0, where cδ,q,β,γ is a positive constant which is independent
of m and s.

(cf. [3, Lemma 5])

Proof. First of all, we have to make sure that all the generating matrices
involved are regular. According to [3, p. 287] this can be achieved by a slight
modification of the generating matrices, which, however, has neither an effect
on the quality parameter of the digital net itself, nor on those of its projec-
tions.

In what follows, we consider the main steps of the proof of [3, Lemma 5].
From [19, p. 7] we learn that for any non-empty u Ď rss we have

tu “
ÿ

jPu

pdegppjq ´ 1q ,

where pj denotes the jth monic irreducible polynomial used in the construc-
tion scheme. The only thing left to do is to determine an upper bound for
the degree of pj, 1 ď j ď s. To this end, we mention that, by assumption,
these polynomials are the first s monic and irreducible polynomials listed ac-
cording to non-decreasing degree and cite [19, Lemma 2], where it is shown
that

degppjq ď logq j ` logq logqpj ` qq ` 2

for all 1 ď j ď s. All in all this implies

qtu ď
ź

jPu

`

qj logqpj ` qq
˘

.

We use this bound on Lemma 5.18 and obtain

qmβe2qm,spPq ď 1`
ÿ

H‰uĎrss

ź

jPu

´

q2β`1
`

j logqpj ` qq
˘β
pm` 2qµpβqγj

¯

“

s
ź

j“1

´

1` q2β`1
`

j logqpj ` qq
˘β
pm` 2qµpβqγj

¯

,

which proves the first assertion.
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For the second part we proceed as it was done in [10, Lemma 3]. To this
end we define

γ̃j :“ q2β`1µpβq
`

j logqpj ` qq
˘β
γj

for all integers j ě 1 as well as

σk :“
8
ÿ

j“k`1

γ̃j

for all k ě 0. For any such k we obtain the following inequality:

log

˜

s
ź

j“1

p1` pm` 2qγ̃jq

¸

ď

8
ÿ

j“1

log p1` pm` 2qγ̃jq

ď

k
ÿ

j“1

log
`

1` σ´1k ` pm` 2qγ̃j
˘

`

8
ÿ

j“k`1

log p1` pm` 2qγ̃jq

“

k
ÿ

j“1

log

ˆ

`

1` σ´1k
˘

ˆ

1`
pm` 2qγ̃j

1` σ´1k

˙˙

`

8
ÿ

j“k`1

log p1` pm` 2qγ̃jq

“ k log
`

1` σ´1k
˘

`

k
ÿ

j“1

log

ˆ

1`
pm` 2qγ̃j

1` σ´1k

˙

`

8
ÿ

j“k`1

log p1` pm` 2qγ̃jq

ď k log
`

1` σ´1k
˘

` pm` 2qσk

k
ÿ

j“1

γ̃j ` pm` 2q
8
ÿ

j“k`1

γ̃j

ď k log
`

1` σ´1k
˘

` pm` 2qσkσ0 ` pm` 2qσk

“ k log
`

1` σ´1k
˘

` pm` 2qσkpσ0 ` 1q.

As
8
ÿ

j“1

pj log jqβ γj ă 8

by assumption, it follows that for any δ ą 0 and some sufficiently large kδ
we have

σkδpσ0 ` 1q ă δ log q.

Consequently, we obtain from the first claim of this theorem in combination
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with the above discussion that

e2qm,spPq ď
1

qmβ

s
ź

j“1

p1` pm` 2qγ̃jq

ď
1

qmβ
`

1` σ´1kδ
˘kδ exp ppm` 2qσkδpσ0 ` 1qq

ď q2δ
`

1` σ´1kδ
˘kδ qmpδ´βq

and the result follows by setting

cδ,q,β,γ :“ q2δ
`

1` σ´1kδ
˘kδ .

Here we easily see the important property that, under certain conditions
on the sequence of weights pγjqjPN, the error bound does not depend on s.
Hence, it follows that strong tractability of integration in Hwal,s,β,γ may be
exploited.

5.3 The construction method by Sobol’

Here, the generating matrices are constructed in a very similar fashion, com-
pared to the method proposed by Niederreiter (see Section 5.2). Hence,
it rather does not come as a surprise that the error estimation for digital
nets constructed by Sobol’s method is similar to the result we had in The-
orem 5.19. The construction principle can be seen in the paragraphs below
or, alternatively, in [5, Section 8.1.3], for instance.

This method only considers the case q “ 2. We set p1pxq “ x and choose
s´1 primitive polynomials1 over F2 and order them according to their degree
in an increasing manner, say

degpp2q ď degpp3q ď . . . ď degppsq.

Furthermore, we define ej “ degppjq and choose polynomials yi,j,kpxq, where
1 ď j ď s, 1 ď i ď m and 0 ď k ă ej. The only restriction we need to put on
these polynomials is that for every 1 ď j ď s the sets tyi,j,kpxq : 0 ď k ă eju
are linearly independent over F2, with the arithmetics taken mod pjpxq.

1 A primitive polynomial over a finite field F is a monic irreducible polynomial whose
roots are generators of the multiplicative group Fzt0u, (cf. [9, p. 639]).
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Then, analogously to the construction method by Niederreiter, we con-
sider the formal Laurent series expansion

yi,j,kpxq

pjpxqi
“

8
ÿ

r“0

apjqpi, k, rqx´r´1,

where the possible values of i, j and k are the same as above. The entries of
the jth generating matrice are now defined as follows:

c
pjq
i,r “ apjqpQ` 1, k, rq,

where 1 ď i ď m, 0 ď r ď m ´ 1 and where the integers Q and 0 ď k ă ej
satisfy

i´ 1 “ Qej ` k.

For any digital pt,m, sq-net constructed by the above scheme we obtain the
following result:

Theorem 5.20. Let P be a digital pt,m, sq-net over F2 constructed
by Sobol’s method. Then, the worst-case error for integration in
HF2,ϕ1wal,s,β,γ

employing the point set P satisfies

e22m,spPq ď
1

2mβ

s
ź

j“1

´

2βc`1 pj log2pj ` 1q log2 log2pj ` 3qqβ pm` 2qµpβqγj

¯

,

where c is a constant independent of all parameters.

Furthermore, if

8
ÿ

j“1

pj log j log log jqβ γj ă 8,

then the worst-case error can be bounded by

e22m,spPq ď cδ,β,γ2mpδ´βq

for any δ ą 0, where the constant cδ,β,γ is independent of s.

(cf. [3, Lemma 5])
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Proof. We closely follow the proof of Theorem 5.19, so, as a matter of fact,
the proof of [3, Lemma 5]. First, we refer to [3, p. 287] to find that the
generating matrices can be made regular without altering important param-
eters of the digital net or its projection and hence Lemma 5.18 can be applied.

For the determination of the quality paramteters tu, H ‰ u Ď rss, we cite
[19, p. 835], which, again, states that

tu “
ÿ

jPu

pdegppjq ´ 1q .

We recall that here, pj denotes the jth element in a previously chosen set of
s primitive polynomials which were sorted by degree in an increasing order.
According to [19, p. 836] we have

degppjq ď log2 j ` log2 log2pj ` 1q ` log2 log2 log2pj ` 3q ` c,

where c is a constant indepent of j and s. All in all this yields (note that
here, q “ 2 by definition)

2tu ď
ź

jPu

`

2c´1j log2pj ` 1q log2 log2pj ` 3q
˘

and after using this inequality on Lemma 5.18 the first part of this theorem
immediately follows.

For the second part we proceed in a similar fashion as in the proof of [10,
Lemma 3] and define a new sequence of weights

γ̃j :“ 2βc`1 pj log2pj ` 1q log2 log2pj ` 3qqβ µpβqγj,

j P N. Due to the assumption

8
ÿ

j“1

pj log j log log jqβ γj ă 8

we have that
8
ÿ

j“1

γ̃j ă 8.

Hence, it makes sense to define

σk :“
8
ÿ

j“k`1

γ̃j.
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Once again, for a fixed δ ą 0 we choose kδ such that

σkδpσ0 ` 1q ă δ log 2.

Following the respective steps in the proof of Theorem 5.19 we get

8
ź

j“1

p1` γ̃jpm` 1qq ď
`

1` σ´1kδ
˘kδ exp ppm` 2qσkδpσ0 ` 1qq

and finish the proof by observing that

e22m,spPq ď
1

2mβ

8
ź

j“1

p1` γ̃jpm` 1qq

ď 22δ
`

1` σ´1kδ
˘kδ 2mpδ´βq.

Again, we close this section by briefly commenting on the last two con-
struction methods, i.e. Niederreiter’s and Sobol’s approach. We immediately
notice that the constants in the respective error estimations may increase
vastly as δ approaches zero. Nevertheless, from these error bounds we see
that the methods may exploit strong tractability if applicable, since we have
managed to bound the worst-case error independently of the dimension s.

Moreover, if we compare the results we have shown for the CBC con-
struction (see Corollary 5.10) to those which we have had for Niederreiter’s
method and Sobol’s method (see Theorems 5.19 and 5.20), we notice that for
the latter two we had to impose stronger conditions on the sequence pγjqjPN
in order to have the possibility to achieve strong tractability than for the
CBC construction method.
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6 Concluding remarks

After having laid the necessary groundwork, that is, in particular, to es-
tablish that the space of generalized Walsh series Hwal,s,β,γ is a reproducing
kernel Hilbert space, we used this fact to find an explicit formula for the
worst-case error, which is computable at a cost of O pn2sq operations (see
Remark 4.8) and this effort can be even reduced to Opnsq operations when
employing digital nets as sample points (see Theorem 4.12).

Subsequently, we used averaging techniques to guarantee the existence of
a digital pt,m, sq-net such that the worst-case error is bounded by

eqm,s ď cs,γ,λ,βq
´m

2λ ,

where cs,γ,λ,β denotes a constant depending on the quantities given in its in-
dex and where λ P p1{β, 1s (see Theorem 4.15), from which we were able to
deduce that there exists a digitial pt,m, sq-net such that (strong) tractability
can be achieved, whenever the sequence of weights γ fulfills certain conditions
(see Corollaries 4.16 and 4.18). Moreover, we even managed to show that
these conditions (with λ “ 1) are also necessary for integration in Hwal,s,β,γ

to be (strongly) QMC-tractable (see Corollary 4.21).

These results, however, left us partly unsatisfied, as none of their proofs
was of a constructive nature. To this end we included a fifth section, where
four construction algorithms for digital pt,m, sq-nets were presented and their
performance, with respect to their error behavior, was investigated. These
algorithms included:

1. The component-by-component (CBC) construction (see Algorithm 5.8),

2. a Korobov type construction (see Algorithm 5.11),

3. the construction method by Niederreiter (see the beginning of Sec-
tion 5.2) and

4. the construction method by Sobol‘ (see the beginning of Section 5.3).

As it was mentioned before in Remark 5.12, the Korobove type construc-
tion is approximately s times faster than the CBC construction. The worst-
case error, however, satisfies an error bound which is, roughly speaking,

?
s

times smaller for the latter (see Theorems 5.9 and 5.13). This also lead to
the fact that, again, under certain conditions on γ, we may achieve strong
tractability in case of the CBC construction, whereas with the Korobov type
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construction the error bound still depends polynomially on s (see Corollar-
ies 5.10 and 5.14).

Finally, after having taken a huge effort to find an appropriate bound for
the worst-case error for point sets constructed by the Niederreiter method
and the Sobol‘ method respectively, we were again able to find conditions
we have to put on the weights γ such that strong tractability can be made
use of (see Theorems 5.19 and 5.20), which are, however, still stronger than
those we have to impose on the weights to obtain a similar result for the
CBC construction method.
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B List of abbreviations

CBC component-by-component
cf. confer
e.g. exempli gratia, for example
f./ff. and the following page/

and the following pages
i.e. id est, that is
iff if and only if
p./pp. page/pages
prop. proposition
QMC quasi-Monte Carlo
rem. remark
thm. theorem
w.l.o.g without loss of generality
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44-1: pp. 385-411, 2006.) . . . . . . . . . . . . . . . . . . . . . 37
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D List of globally used symbols

Numbers, vectors and matrices

As a general guideline we mention that numbers and matrices are printed
in regular letters (e.g. x stands for some number, C for some matrix,. . . ),
while vectors are printed in bold letters (e.g. x). Moreover, for (vectors of)
polynomials (bold) fraktur letters are used (e.g. p,p, k,. . . ).

r positive integer
p prime number
q prime power, q :“ pr

s positive integer, usually denotes the dimension
β real number, β ą 1
i imaginary unit, i2 “ ´1
0, 0 neutral element of addition (the corresponding space

should be clear from the context)
γ positive weight
γ γ “ pγ1, γ2, . . .q sequence of non-increasing positive weights
γλ γλ “ pγλ1 , γ

λ
2 , . . .q, where λ is real

δij Kronecker delta, i.e. δij P t0, 1u and δij “ 1 iff i “ j
where i, j are positive integers.

rpβ, γ, kq see Equation (4), where k is a positive integer
rpβ,γ,kq see Definition 2.22, where k a vector of positive integers
µpβq see Lemma 2.16

f̂pkq, f̂pkq kth (or kth) Walsh-Fourier coefficient of a Walsh series
f P Hwal,β,γ (or f P Hwal,s,β,γ), where k is a non-negative
integer (or k is a vector of non-negative integers),
see Definition 2.11 (or Definition 2.22)
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Sets and set-related operations

X arbitrary set
Xs s-fold cartesian product of a set X
|X|, #X cardinality of a set X
λpXq Lebesgue measure of a set X
H empty set
R real numbers
C complex numbers
N non-negative integers
N0 NY t0u
rds the set t1, 2, . . . , du, d P N
Z integers
Zb residue class ring modulo b, b P N; usually identified

with the least residue system modulo b, i.e. t0, 1, . . . , b´ 1u
F, Fq finite field (with q elements, where q is a prime power)
Fm̂ m set of all mˆm matrices over F, m P N
Frxs field of polynomials over F
Fppx´1qq field of formal Laurent series over F, see beginning of

Section 5
Gq,m set of non-zero polynomials over Fq with degree less than

m P N
D, D˚ dual net (or dual net without zero), see Definition 4.11
Dp,q, D˚p,q polynomial related version of dual net (dual net without

zero) see Lemma 5.7
Sppqq polynomial lattice point set, see Definition 5.1
H Hilbert space (general case)
Hwal,β,γ one-dimensional Hilbert space of generalized Walsh series,

see Corollary 2.15
Hwal,s,β,γ s-dimensional analogon of Hwal,β,γ, s P N, see

Definition 2.22
L2pXq Hilbert space of square-integrable functions defined on a

set X
H1 bH2 tensor product of two Hilbert spaces H1 and H2
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Special operations, maps, functions and operators

z complex conjugate of z P C
|z| absolute value of z P C
txu floor function of x P R
}k}8 maxtk1, . . . , kdu for k “ pk1, . . . , kdq P Nd

0, d P N
aJ, CJ transpose of a vector a or of a matrix C
degppq degree of a polynomial p
vspqq see paragraph before Algorithm 5.11
trm truncation operator, m P N; see paragraph after Theorem 5.6
a ¨ b Euklidean product of two vectors a and b
p ¨ q

řs
j“1 pjqj, where p “ pp1, . . . , psq, q “ pq1, . . . , qsq P Fsq

‘, a binary, digitwise operation, see Definition 2.4
ϕ1 arbitrary bijection from Zq to Fq with ϕ1p0q “ 0
ϕ extension of ϕ1, ϕ : Zqm Ñ pFmq qJ, see Lemma 3.8;

sometimes also its extension ϕ : N0 Ñ pFmq qJ, see paragraph
before Definition 4.11

ψ isomorphism between the additive groups Fq and Zrp,
sometimes also its extension, see Figure 2

η the map ψ ˝ ϕ1, sometimes also concatenation of the
respective extensions ψ ˝ ϕ, see Figure 2

exppzq exponential function ez, z P C
log, logb natural logarithm (or logarithm to base b, b ą 1)
walk, walk kth (or kth) generalized Walsh function over Fq,

see Definition 2.3
K reproducing kernel of a Hilbert space H (general case),

see Definition 2.1
Kwal,β,γ reproducing kernel of Hwal,β,γ, see Theorem 2.17
Kwal,s,β,γ reproducing kernel of Hwal,s,β,γ , see Theorem 2.23
x¨, ¨y inner product on a Hilbert space H (general case)
x¨, ¨ywal,γ inner product on Hwal,β,γ, see paragraph before Lemma 2.12
x¨, ¨ywal,s,γ inner product on Hwal,s,β,γ , see Definition 2.22

} ¨ } norm (general case); usually induced norm } ¨ } :“
a

x¨, ¨y
} ¨ }wal,γ induced norm on Hwal,β,γ

} ¨ }wal,s,γ induced norm on Hwal,s,β,γ

Qn,spfq quasi-Monte Carlo-rule for a function f , see the beginning
of Section 4

Ispfq integral operator, see the beginning of Section 4
en,s, epQn,sq worst-case error, see Definition 4.4; might take different

arguments, depending on what is intended to be emphasized
nminpε, sq information complexity, see Definition 4.5
Opfpxqq big O of fpxq in the sense of Landau notation, i.e.

gpxq “ Opfpxqq iff f is an asymptotical upper bound
for g (here for xÑ 8)
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